
GSW
文章平均质量分 87
WU
够钟ing
这个作者很懒,什么都没留下…
展开
-
GSW(4)
我们基于身份和基于属性的FHE方案基于身份的加密(IBE)[Sha84,BF03]和基于属性的加密(ABE)[SW05,GPSW06]是设计对于加密数据比传统的公钥设施提供更灵活的访问控制(access control)。传统地,IBE和ABE并没有提供在加密数据上的任何计算。然而,对加密数据的访问控制保持重要(尤其)当数据同态的加密。(看[CHT13]对于应用很好的讨论)。不幸地是,存在的一些IBE方案允许简单同态操作[GHV10,CHT13],这是一个难以处理的开放问题[Nac10,GHV10,Bra1原创 2022-06-07 22:00:31 · 508 阅读 · 1 评论 -
GSW (3)
Our LWE-Based FHE Scheme1. 基本加密方案这里,我们正式描述我们基本的加密方案(没有同态操作)。这个描述匹配在介绍概括中的描述。在我们的描述中,我们分离KeyGen为三个部分Setup,SecretKeyGen,PublicKeyGen。我们提供两个解密算法Dec和MPDec。Dec是充分恢复信息当在小空间时(例{0,1})。MPDec是被Micciancio and Peikert[MP12]提出,能够恢复任意。Setup():选择一个模数q,比特长,格的维度参数,和误原创 2022-06-04 22:06:13 · 913 阅读 · 0 评论 -
GSW(2)Preliminaries
1.LWE问题和GapSVPLWE问题是被Regev[Reg05]所提出。定义1(LWE) 对于安全参数,令是整数维度,是整数,是在上的分布。问题是去区分下面两个分布:在第一个分布,均匀抽样。在第二个分布中,首先均匀取出(均匀选取),之后取样,其中(均匀选取),设置。假设是问题是无解的。有时这是合适的去把向量看作为矩阵的行,重新定义为。然后,要么矩阵是均匀的,要么存在一个第一项系数为1的向量使得,这里的系数来自分布。对于格维度参数为和数,问题是区分是否一个维格有一个向量短于或者没有向量短于。原创 2022-05-27 18:57:35 · 641 阅读 · 0 评论 -
GSW 学习笔记(1)
首先,对论文进行整体学习Homomorphic Encryption from Learning with Errors:Conceptually-Simpler, Asymptotically-Faster,Attribute-Based(作者:Craig Gentry, Amit Sahai, Brent Waters)摘要:本文的全同态加密方案是基于LWE的(Learning with errors)。在先前的LWE-based方案中,乘法步骤会涉及到"relinearization"[bv1原创 2022-05-22 20:19:57 · 1042 阅读 · 1 评论