人工智能深度学习的图像分割实战(unet,maskFormer,mask2Former)

github网站下,open–mmlab的mmdetection下面会包括有物体检测(object  detection),实例分割(instance segmentation )等内容,可选比较新的顶会论文研究。

实例分割就是要把每个小类别都要分割出来(不止分出大类,还要区分出每个实体出来);语义分割就是将图像中的每个象素点分类到不同类别中(同一类的用一种颜色表示,例几个人连在一起也就用同一种颜色表示,没细分第几个人),经典的语义分割模型是2015年的unet,应用领域包括自动驾驶中的识别道路,人,车等;还包括运用到医疗影象中的识别病变区域;还包括卫星图像中的识别不同的地物类型;还包括自动抠图中的从背景中分离出前景物体等等

一.unet

unet是主要用transformer的encoder,chatgpt主要用transformer的decoder,而h5就encoder与decoder都有用。

(1)图像分割和损失函数概述

1)图像分割与语义分割的概述

检测任务是指要找的物体框出来就行,分割任务是逐像素点找到你需要的物体。分割时有前景与背景(干拢因素)之说。

2)分割任务中的目标函数定义

它的损失函数就是逐像素的交叉熵,神经网络的分类任务损失函数就是用交叉熵,其公式就略了。优化后的损失函数就是在某些像素点难预测的权重占比大一小,也就是说前面乘上个参数值表示权重值。

3)miou评估标准

iou在多分类中的计算:iou=x/(tureValue+preValue-x),在行列式中x轴上表示某类的预测值preValuey,轴上表示某类的真实值tureValue,某类在x与y相交值为x。例如tureValue有1,2,3,4,5,6,7,8,9个,preValue有2,3,4,2,5,1,7,2,6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_58351028

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值