- 博客(13)
- 收藏
- 关注
原创 Vibe Coding的感想:从自动补全到 Copilot 的技术与职业全景
势 = 事物未来发展轨迹的状态行业势整个 AI Coding 行业往哪里走、技术怎么演进、有哪些玩家、典型应用场景是什么。个体势在这样的浪潮下,个人要具备什么能力,如何让自己成为「超级个体」,而不是被时代淘汰。关键思路:先看清「势」,再选择「顺势而为」。
2026-01-10 00:33:43
845
原创 学习真正的Vibe Coding的第一天
对于课程、讲座、会议和长内容视频,最迫切的需求往往是“快速知道讲了什么、哪里是重点”,而不是从头到尾完整观看。自动字幕与摘要系统通过“ASR + 文本处理 + 视觉辅助”的组合,将音频内容转写为时间戳对齐的文本,再在此基础上生成结构化大纲与精简摘要,实现从“小时级视频”到“分钟级阅读”的信息压缩。在实现层面,ASR 模块负责稳定、高质量地给出多语言转写和时间轴对齐;文本侧则利用大语言模型对原始转写进行纠错、分句和语义重整,提取章节标题、关键信息和问题–答案对。
2026-01-09 14:10:51
912
原创 用本地模型创建本地智能体工作坊——构建人生中的第一个 podcast的全流程学习笔记与实践复盘
幕次核心目标关键技术栈输出物第一幕构建单AI代理具备研究、写作、联网能力的智能体第二幕编排多代理工作流Agent Orchestration + DevUI + 工作流引擎完整的播客脚本生成与审批系统第三幕生成多说话人音频VibeVoice TTS + Hugging Face模型真实的播客音频文件(.wav)
2026-01-08 09:35:13
984
原创 从原理到实践:一文读懂大语言模型的核心与未来
回望历程,语言模型从稚嫩的“猜词游戏”起步,历经数次范式革命,终成今日的“数字大脑”。它的核心魅力,在于将人类浩如烟海的语言知识,压缩进一个可计算、可交互的模型中。它并非万能,其光芒与阴影同样显著。理解其原理,我们便能更好地驾驭它;看清其局限,我们才能更负责地使用它。未来已来,这场由语言驱动的智能革命,正邀请我们每个人成为参与者,而不仅仅是旁观者。
2025-12-29 17:25:55
739
原创 NVIDIA DLI《Build a Deep Research Agent》课程学习笔记
智能体的多阶段工作流由LangGraph等框架编排。# 基于课程描述的智能体工作流伪代码# 第一阶段:Scoping (计划制定)research_plan = scoping_agent.run(user_query) # 与用户对话,生成计划if not user_approves(research_plan): # 人工审批环节# 第二阶段:Execution (计划执行)# 并行检索# 信息整合与迭代。
2025-12-29 11:58:53
584
原创 大模型全栈开发实战指南(第三天)
通过本次实战学习,我们掌握了如何利用和QLoRA技术在有限的算力资源下对开源大模型(如 Qwen)进行微调。核心流程回顾:构造高质量的指令问答对。使用 BitsAndBytesConfig 进行 4-bit 加载。只训练低秩适配器矩阵。使用trl库快速启动训练。加载适配器进行推理。微调不仅让模型学会了特定任务,更重要的是让模型的行为更符合人类的预期,是构建垂直领域 AI 应用的基石技能。
2025-12-25 09:39:23
1018
原创 [特殊字符] Docker 核心技术进阶学习笔记
容器是进程,不是虚拟机:容器共用宿主机内核,所以它启动极快。但也意味着容器内的内核参数调优可能影响宿主机。不可变基础设施 (Immutable Infrastructure):不要在运行中的容器内手动安装软件或修改配置。所有的变更都应体现在Dockerfile中并重新构建,确保环境的可追溯性。无状态化 (Stateless):尽量让应用服务无状态化(将状态存入数据库或 Redis),这样可以利用 Docker 快速实现水平扩容。学习建议初学者:熟练掌握常用指令和部署流程。进阶者。
2025-12-24 14:49:04
895
原创 《源大模型微调实战》学习笔记
数据处理一致性:验证阶段prompt模板需与训练阶段保持一致错误处理:生成时设置可解决"NoneType object has no attribute 'shape'"错误资源管理:训练前后注意显存清理,Demo运行需重启内核释放显存模型选择:源2.0-2B作为中文优化模型,适合中文NLP任务微调LoRA优势:显著减少训练参数,本例中可训练参数占比极小,实现高效微调。
2025-12-23 20:43:37
505
原创 Docker容器化与AI大模型部署全栈指南
1. 基础镜像选择 - GPU环境# 2. 元数据标签LABEL description="Qwen2VL模型推理环境"# 3. 环境变量优化# 4. 系统依赖安装(最小化原则)wget \git \curl \# 5. Conda环境安装# 6. 复制环境配置文件并创建环境# 7. 激活环境# 8. 工作目录设置COPY . .# 9. 创建非root用户(安全实践)# 10. 健康检查# 11. 暴露端口# 12. 启动命令(使用gunicorn优化)
2025-12-19 21:58:45
684
原创 大模型全栈开发实战指南(第二天)
RAG核心价值:解决大模型知识局限性、安全性和幻觉问题技术关键点:向量表示质量、检索准确率、prompt设计实战要点:从简化实现开始,逐步添加优化策略学习路径:理解原理 → 动手实现 → 学习框架 → 深入优化RAG技术仍在快速发展中,掌握基本原理和实现方法后,可根据具体应用场景选择合适的技术栈和优化方案。
2025-12-18 12:50:36
570
原创 动手学大模型应用全栈开发学习心得:从零基础到10分钟速通实践baseline
这个教程最大的亮点是将复杂的大模型应用开发流程简化到了极致。通过使用成熟的框架和预训练模型,即使是零基础的学习者也能在短时间内搭建起可用的应用。这让我意识到,学习新技术时,选择合适的工具和框架可以事半功倍。"动手学大模型应用全栈开发"这个教程为我打开了大模型应用开发的大门。通过10分钟的速通实践,我不仅掌握了基本的全栈开发技能,更重要的是建立了继续学习的信心和方向。对于任何想进入大模型应用开发领域的学习者来说,这个baseline都是一个极佳的起点。
2025-12-18 11:27:22
479
原创 大模型全栈开发实战指南(第一天)
大模型本质是超大规模的语言模型,核心任务在于建模「下一个词的概率分布」。其技术演进经历了从统计语言模型到神经语言模型,再到预训练模型和大语言模型的四个阶段。模型开发本质上是通过不同技术手段释放预训练模型潜力,需要根据具体场景在效率、成本、性能之间取得平衡。
2025-12-16 10:52:40
326
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅