NNDL 实验六 卷积神经网络(1)卷积

卷积神经网络(Convolutional Neural Network,CNN)

  • 受生物学上感受野机制的启发而提出。
  • 一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络
  • 有三个结构上的特性:局部连接、权重共享、汇聚。
  • 具有一定程度上的平移、缩放和旋转不变性。
  • 和前馈神经网络相比,卷积神经网络的参数更少。
  • 主要应用在图像和视频分析的任务上,其准确率一般也远远超出了其他的神经网络模型。
  • 近年来卷积神经网络也广泛地应用到自然语言处理、推荐系统等领域。

目录

5.1 卷积 

5.1.1 二维卷积运算 

5.1.2 二维卷积算子 

5.1.3 二维卷积的参数量和计算量

5.1.4 感受野 

5.1.5 卷积的变种 

5.1.5.1 步长(Stride)

5.1.5.2 零填充(Zero Padding) 

5.1.6 带步长和零填充的二维卷积算子

5.1.7 使用卷积运算完成图像边缘检测任务

选做 

 总结:


5.1 卷积 

考虑到使用全连接前馈网络来处理图像时,会出现如下问题:

(1)模型参数过多,容易发生过拟合。 在全连接前馈网络中,隐藏层的每个神经元都要跟该层所有输入的神经元相连接。随着隐藏层神经元数量的增多,参数的规模也会急剧增加,导致整个神经网络的训练效率非常低,也很容易发生过拟合。

(2)难以提取图像中的局部不变性特征。 自然图像中的物体都具有局部不变性特征,比如尺度缩放、平移、旋转等操作不影响其语义信息。而全连接前馈网络很难提取这些局部不变性特征。

卷积神经网络有三个结构上的特性:局部连接、权重共享和汇聚。这些特性使得卷积神经网络具有一定程度上的平移、缩放和旋转不变性。和前馈神经网络相比,卷积神经网络的参数也更少。因此,通常会使用卷积神经网络来处理图像信息。

卷积是分析数学中的一种重要运算,常用于信号处理或图像处理任务。本节以二维卷积为例来进行实践。
 

5.1.1 二维卷积运算 

在机器学习和图像处理领域,卷积的主要功能是在一个图像(或特征图)上滑动一个卷积核,通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核的翻转,而这也会带来一些不必要的操作和开销。因此,在具体实现上,一般会以数学中的互相关运算来代替卷积。

在神经网络中,卷积运算的主要作用是抽取特征,卷积核是否进行翻转并不会影响其特征抽取的能力。特别是当卷积核是可学习的参数时,卷积和互相关在能力上是等价的。因此很多时候,为方便起见,会直接用互相关来代替卷积。

对于一个输入矩阵X\in \mathbb{R} ^{M\times N}和一个滤波器W\in \mathbb{R} ^{U\times V},它们的卷积为:

y_{i,j}=\sum_{u=0}^{U-1}\sum_{v=0}^{V-1}w_{uv}x_{i}+u,j+v .(5.1)

下图给出了卷积计算的示例。 

 

经过卷积运算后,最终输出矩阵大小则为

M′=M−U+1,(5.2)

N′=N−V+1.(5.3)

可以发现,使用卷积处理图像,会有以下两个特性:

1、在卷积层(假设是第层)中的每一个神经元都只和前一层(第层)中某个局部窗口内的神经元相连,构成一个局部连接网络,这也就是卷积神经网络的局部连接特性。
2、由于卷积的主要功能是在一个图像(或特征图)上滑动一个卷积核,所以作为参数的卷积核对于第层的所有的神经元都是相同的,这也就是卷积神经网络的权重共享特性。
 

5.1.2 二维卷积算子 

在本章后面的实现中,算子都继承torch.nn.Module,并使用支持反向传播的pytorchAPI进行实现,这样我们就可以不用手工写backword()的代码实现。

 根据公式(5.1),我们首先实现一个简单的二维卷积算子,代码实现如下:

import torch
import torch.nn as nn
import numpy as np


class Conv2D(nn.Module):
    def __init__(self, kernel_size, weight_attr=torch.tensor([[0., 1.], [2., 3.]])):  # 类初始化,初始化权重属性为默认值,weight_attr为卷积核
        super(Conv2D, self).__init__()  # 继承torch.nn.Module中的Conv2D卷积算子
        self.weight = torch.nn.Parameter(weight_attr)

    def forward(self, X):
        u, v = self.weight.shape
        output = torch.zeros([X.shape[0], X.shape[1] - u + 1, X.shape[2] - v + 1])
        for i in range(output.shape[1]):
            for j in range(output.shape[2]):
                output[:, i, j] = torch.sum(X[:, i:i + u, j:j + v] * self.weight, dim=[1, 2])
        return output


# 随机构造一个二维输入矩阵
torch.manual_seed(100)
inputs = torch.tensor([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]])

conv2d = Conv2D(kernel_size=2)
outputs = conv2d(inputs)
print("input: {}, \noutput: {}".format(inputs, outputs))

 运行结果:

input: tensor([[[1., 2., 3.],
         [4., 5., 6.],
         [7., 8., 9.]]]), 
output: tensor([[[25., 31.],
         [43., 49.]]], grad_fn=<CopySlices>)

5.1.3 二维卷积的参数量和计算量

参数量

由于二维卷积的运算方式为在一个图像(或特征图)上滑动一个卷积核,通过卷积操作得到一组新的特征。所以参数量仅仅与卷积核的尺寸有关,对于一个输入矩阵X\in \mathbb{R} ^{M\times N}和一个滤波器W\in \mathbb{R} ^{U\times V},卷积核的参数量为U\times V

假设有一幅大小为32 × 32 的图像,如果使用全连接前馈网络进行处理,即便第一个隐藏层神经元个数为1,此时该层的参数量也高达1025个,此时该层的计算过程如图所示。

 可以想象,随着隐藏层神经元数量的变多以及层数的加深,使用全连接前馈网络处理图像数据时,参数量会急剧增加。如果使用卷积进行图像处理,当卷积核为3×3时,参数量仅为9相较于全连接前馈网络,参数量少了非常多。

计算量

在卷积神经网络中运算时,通常会统计网络总的乘加运算次数作为计算量(FLOPs,floating point of operations),来衡量整个网络的运算速度。对于单个二维卷积,计算量的统计方式为:

FLOPs=M′×N′×U×V。

其中M′×N′表示输出特征图的尺寸,即输出特征图上每个点都要与卷积核进行U×V次乘加运算。对于一幅大小为32×32的图像,使用3×3的卷积核进行运算可以得到以下的输出特征图尺寸:

M′=M−U+1=30M′=M−U+1=30

N′=N−V+1=30N′=N−V+1=30

此时,计算量为:

 FLOPs=M′×N′×U×V=30×30×3×3=8100
 

5.1.4 感受野 

输出特征图上每个点的数值,是由输入图片上大小为U×V的区域的元素与卷积核每个元素相乘再相加得到的,所以输入图像上U×V区域内每个元素数值的改变,都会影响输出点的像素值。我们将这个区域叫做输出特征图上对应点的感受野。感受野内每个元素数值的变动,都会影响输出点的数值变化。比如3×3卷积对应的感受野大小就是3×3,如下图所示。

而当通过两层3×3的卷积之后,感受野的大小将会增加到5×5,如下图所示。

 

 因此,当增加卷积网络深度的同时,感受野将会增大,输出特征图中的一个像素点将会包含更多的图像语义信息。

5.1.5 卷积的变种 

在卷积的标准定义基础上,还可以引入卷积核的滑动步长和零填充来增加卷积的多样性,从而更灵活地进行特征抽取。

5.1.5.1 步长(Stride)

在卷积运算的过程中,有时会希望跳过一些位置来降低计算的开销,也可以把这一过程看作是对标准卷积运算输出的下采样。在计算卷积时,可以在所有维度上每间隔S个元素计算一次,S称为卷积运算的步长(Stride),也就是卷积核在滑动时的间隔。此时,对于一个输入矩阵对于一个输入矩阵X\in \mathbb{R} ^{M\times N}和一个滤波器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值