python数据分析简介

Python数据分析简介及环境搭建

学习目标

  • 了解Python做数据分析的优势

  • 知道Python数据分析常用开源库

  • 知道如何启动jupyter notebook

  • 知道如何使用jupyter notebook

  1. Python进行数据分析的优势

  • Python作为当下最为流行的编程语言之一,可以独立完成数据分析的各种任务

    • 功能强大,在数据分析领域里有海量开源库,并持续更新

    • 是当下热点——机器学习/深度学习 领域最热门的编程语言

    • 除数据分析领域外,在爬虫,Web开发等领域均有应用

  • 与Excel,PowerBI,Tableau等软件比较

    • Excel有百万行数据限制,PowerBI ,Tableau 在处理大数据的时候速度相对较慢

    • Excel,Power BI 和Tableau 需要付费购买授权

    • Python作为热门编程语言,功能远比Excel,PowerBI,Tableau等软件强大

    • Python跨平台,Windows,MacOS,Linux都可以运行

  • 与R语言比较

    • Python在处理海量数据的时候比R语言效率更高

    • Python的工程化能力更强,应用领域更广泛,R专注于统计与数据分析领域

    • Python在非结构化数据(文本,音视频,图像)和深度学习领域比R更具有优势

    • 在数据分析相关开源社区,python相关的内容远多于R语言

  1. 常用Python数据分析开源库介绍

  1. NumPy

NumPy(Numerical Python) 是Python数据分析必不可少的第三方库,NumPy的出现一定程度上解决了Python运算性能不佳的问题,同时提供了更加精确的数据类型,使其具备了构造复杂数据类型的能力。

  • 是一个运行速度非常快的数学库,主要用于数组计算,包含:

    • 高性能科学计算和数据分析的基础包

    • ndarray,多维数组,具有矢量(向量)运算能力,快速、节省空间

    • 矩阵运算,无需循环,可完成类似Matlab(商业数学软件)中的矢量运算

    • 用于读写磁盘数据的工具以及用于操作内存映射文件的工具

    • 示例代码1: 无需使用循环逐个元素地进行操作

       

      import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = a + b print(c) # [5 7 9]

    • 示例代码2: 计算两个向量的点积

       

      a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) dot_product = np.dot(a, b) print(dot_product) # 32

  1. Pandas

  • Pandas是一个强大的分析结构化数据的工具集,Pandas丰富的API能够更加灵活、快速的对数据进行清洗、处理以及分析。

  • Pandas在数据处理上具有独特的优势:

    • 底层是基于NumPy构建的,所以运行速度特别的快

    • 有专门的处理缺失数据的API

    • 具有强大而灵活的分组、聚合、转换功能

  • Pandas利器之 Series

    • Series是一种类似于一维数据的数据结构

    • 是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即行索引)组成

    • 仅由一组数据也可产生简单的Series对象

  • Pandas利器之 DataFrame

    • DataFrame是一种表格型的数据结构,既有行索引也有列索引,可以简单的把DataFrame理解为一张数据表

    • 包含有一组或多组有序的列(Series),每列可以是不同的值类型(数值、字符串、布尔型等)

  1. Matplotlib

Matplotlib 是一个功能强大的数据可视化开源Python库

  • Python中使用最多的图形绘图库

  • 可以创建静态,动态和交互式的图表

  • 通过简单的代码调用,轻松地绘制出复杂的图形。

  • 示例1

  1. Seaborn

  • Seaborn是一个Python数据可视化开源库

  • 建立在matplotlib之上,并集成了pandas的数据结构

  • Seaborn通过更简洁的API来绘制信息更丰富,更具吸引力的图像

  • 面向数据集的API,与Pandas配合使用起来比直接使用Matplotlib更方便

  • 用户无需过多关注底层的细节即可生成高质量的图表

  • 示例:

  1. Sklearn

  • scikit-learn 是基于 Python 语言的机器学习工具

    • 简单高效的数据挖掘和数据分析工具

    • 可供大家在各种环境中重复使用

    • 建立在 NumPy ,SciPy(Scientific Python) 和 matplotlib 上

    • 简化了机器学习的工作流程,提高了模型的性能和准确性。

  1. Jupyter Notebook

  1. 概述

  • Jupyter Notebook是一个开源 Web 应用程序,使用Jupyter Notebook可以创建和共享

    • 代码

    • 数学公式

    • 可视化图表

    • 笔记文档

  • Jupyter Notebook用途

    • 数据清理和转换

    • 统计分析

    • 数据可视化

    • 机器学习等

  • Jupyter Notebook是数据分析学习和开发的首选开发环境

  1. 配置

  1. 设置jupyter服务密码

  • 进入python的命令终端, 在linux终端执行 python 命令

  • 输入以下代码设置密码, 记录生成的密码字符串

 

from notebook.auth import passwd passwd() # 设置自己的密码,然后两次输入确认生成加密字符串, 密码设置为 123456 即可

  1. 生成Jupyter配置文件并配置

  • 在linux终端执行以下命令, 生成jupyter_notebook_config.py配置文件

 

jupyter notebook --generate-config

  • 打开jupyter_notebook_config.py配置文件, 在最后添加以下内容即可

 

# 打开文件 vim ~/.jupyter/jupyter_notebook_config.py # 添加以下内容 c.NotebookApp.allow_remote_access = True #允许远程访问 c.NotebookApp.allow_root = True #允许root访问 c.NotebookApp.ip='*' # 所有ip皆可访问 c.NotebookApp.password = '上面复制的那个字符串' c.NotebookApp.open_browser = False # 禁止自动打开浏览器 c.NotebookApp.port =8888 # 端口 c.NotebookApp.notebook_dir = '/'

  1. how 怎么用

  1. 使用浏览器连接 且 操作

  1. 启动 jupyter 服务
  • linux终端输入 jupyter notebook 命令启动

 

jupyter notebook

  1. 访问 jupyter
  • 在本地浏览器中输入 192.168.88.100:8888, 进入jupyter的web界面

  • 注意: 不要关闭jupyter服务

  1. Jupyter Notebook的使用
  1. Jupyter Notebook的界面
  • 新建notebook文档

  • 注意:Jupyter Notebook 文档的扩展名为.ipynb,与我们正常熟知的.py后缀不同

  • 新建文件之后会打开Notebook界面

  • 菜单栏中相关按钮功能介绍:

  • Jupyter Notebook的代码的输入框和输出显示的结果都称之为cell,cell行号前的 * ,表示代码正在运行

  1. Jupyter Notebook常用快捷键
Jupyter Notebook中分为两种模式:命令模式和编辑模式
  • 两种模式通用快捷键

    • Shift+Enter,执行本单元代码,并跳转到下一单元

    • Ctrl+Enter,执行本单元代码,留在本单元

  • 按ESC进入命令模式

  • Y,cell切换到Code模式

  • M,cell切换到Markdown模式

  • A,在当前cell的上面添加cell

  • B,在当前cell的下面添加cell

  • 双击D:删除当前cell

  • 编辑模式:按Enter进入,或鼠标点击代码编辑框体的输入区域

  • 撤销:Ctrl+Z(Mac:CMD+Z)

  • 补全代码:变量、方法后跟Tab键

  • 为一行或多行代码添加/取消注释:Ctrl+/(Mac:CMD+/)

  1. Jupyter Notebook中使用Markdown
  • 在命令模式中,按M即可进入到Markdown编辑模式

  • 使用Markdown语法可以在代码间穿插格式化的文本作为说明文字或笔记

  • Markdown基本语法:标题和缩进

  • 效果如下图所示

  1. 编写代码
 

# 快速入门

 

import numpy as np import matplotlib.pyplot as plt import pandas as pd

 

a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) a

  1. 使用 pycharm 连接 且 操作

  1. 配置

创建好项目之后, 配置一个远程解释器 在项目的设置setting 菜单中 设置 python interpreter

第一次设置会弹出一个窗口, 点击yes 在下面的窗口输入密码

  1. 远程连接

  1. 操作

 

import numpy as np import matplotlib.pyplot as plt import pandas as pd

 

a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) a

总结

  • 了解Python做数据分析的优势

    • Python可以独立高效的完成数据分析相关的全部工作

  • 知道Python数据分析常用开源库

    • Pandas

    • Numpy

    • Matplotlib

    • Seaborn

    • sklearn

  • 会启动和使用jupyter notebook

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值