- 博客(78)
- 收藏
- 关注
原创 齿轮故障诊断(DNN和CNN)
齿轮故障通常通过振动信号进行监测和分析。通过采集设备运行过程中的振动信号、声音信号或温度数据,可以发现齿轮的故障类型,如齿面磨损、裂纹、变形、缺齿等。故障诊断的关键是从这些信号中提取有效特征,判断齿轮是否发生故障以及故障的类型和严重程度。
2024-12-23 08:45:00
1455
原创 遗传算法特征筛选和GA-BP
遗传算法(GA)可以非常有效地用于特征选择和神经网络优化,尤其是结合BP神经网络时,能够有效优化权重和网络结构,提升模型性能。遗传算法通过模拟自然选择的过程,使得网络能够从多个角度进行全局搜索,避免了传统BP方法可能遇到的局部最优问题。在实际应用中,GA与BP的结合能够在复杂问题中提供更强的泛化能力。
2024-12-22 19:14:54
695
原创 LSTM多输入单输出预测
LSTM多输入单输出预测模型能够有效处理来自不同数据源的时序数据和非时序数据。在处理任务时,可以将不同类型的输入数据通过独立的LSTM层或全连接层处理,最终合并特征并通过全连接层得到预测结果。这种模型非常适合于多模态数据融合的场景,能够提高模型的准确性和泛化能力。
2024-12-22 19:11:28
1551
原创 RNN多输入单输出预测
RNN多输入单输出预测模型适合处理那些来自多个时序数据源的预测任务。通过使用不同的网络分支(如RNN层、LSTM层等)分别处理每个输入数据,再将这些数据进行合并,最终通过全连接层输出一个单一的预测结果。这种方法能够有效地整合多个时间序列和其他类型的数据,提高模型的预测能力。对于不同类型的输入数据(如图像、时序数据、静态数据等),可以灵活选择合适的处理方式,以最大化模型的效果。
2024-12-21 08:15:00
796
原创 CNN多输入单输出预测
多输入单输出的CNN模型通过同时处理来自多个不同来源的数据来进行预测。这种方法能够充分利用不同类型的数据,增强模型的预测能力。根据输入数据的不同,可以设计相应的处理层(如卷积层、LSTM层、全连接层等)来提取特征,并通过合并层将不同来源的信息融合,最终通过全连接层输出预测结果。这种模型的设计思路适用于很多实际场景,尤其是在图像和其他类型数据(如时序、文本等)结合的任务中。
2024-12-20 06:30:00
964
原创 数学建模SOM神经网络聚类
自组织映射(SOM)是由Teuvo Kohonen在1980年代提出的一种神经网络模型,主要用于数据的聚类、降维和可视化。SOM网络将高维数据映射到低维(通常是二维)空间中,在映射过程中保留数据的拓扑关系。SOM通过竞争学习机制工作,其中每个神经元与输入数据之间计算一个相似度,最相似的神经元称为胜出神经元。通过一系列迭代,胜出神经元和邻域内的神经元的权重逐渐更新,从而实现数据的聚类。
2024-12-19 11:00:00
1331
原创 数学建模问题中阻滞增长模型
阻滞增长模型(特别是逻辑斯蒂增长模型)是一种非常有效的工具,广泛应用于生态学、经济学、技术创新等领域,能够描述受资源限制的增长过程。通过模型的建立,可以预测系统在不同条件下的增长趋势,并为政策制定、资源分配等提供理论依据。然而,模型的简化假设也使得它在某些复杂系统中的适用性受到限制,因此需要根据具体问题进行模型调整和扩展。
2024-12-19 07:45:00
1046
原创 数学建模MK突变趋势检验
Mann-Kendall检验是一种强大的工具,用于判断时间序列数据中的趋势,尤其适用于气候学、水文学等领域。通过无参数的方式,MK检验能够判断数据是否存在单调趋势,且对数据分布不做过多假设。在实际应用中,MK检验可以有效帮助我们揭示长时间尺度下的数据变化趋势,从而为决策提供依据。
2024-12-18 06:15:00
1922
原创 RBF神经网络自适应控制
RBF神经网络自适应控制方法通过结合RBF神经网络的非线性逼近能力和自适应控制技术,能够有效处理系统动态不确定性和外部扰动。其设计过程包括通过RBF网络逼近系统的非线性动态、设计合适的控制器、在线更新权重和中心等步骤。尽管RBF神经网络自适应控制具有很好的性能,但仍面临计算复杂度和收敛性等挑战。在实际应用中,需要综合考虑系统的特性和控制目标,以选择合适的网络结构和优化算法。
2024-12-17 06:00:00
1133
原创 数学建模问题中的核主成分分析KPCA
核主成分分析(KPCA)通过引入核函数,将数据从低维空间映射到高维空间,在该空间内进行PCA,以实现对非线性数据的有效降维。它为传统的PCA提供了一个强大的扩展,可以处理非线性关系的数据。尽管KPCA在许多实际应用中取得了成功,但它的计算开销和对核函数的选择仍然是挑战。在处理大规模数据时,可能需要采用近似方法或选择更高效的核函数。
2024-12-17 04:00:00
1006
原创 PSO优化BP神经网络
PSO优化BP神经网络是一种非常有效的优化方法,通过结合PSO和BP神经网络,可以提高神经网络的训练效率,避免局部最优问题,并提升网络的预测能力。PSO提供了全局搜索的能力,而BP神经网络则具有强大的建模能力,两者结合可以解决许多复杂的预测问题。将PSO应用于优化BP神经网络(BP-NN)的权重和偏置,可以有效地改进网络的训练过程,避免BP算法中的局部最优问题,并提升神经网络的性能。每个粒子代表BP神经网络中的一组权重和偏置,并通过PSO的搜索机制来找到全局最优解,从而提高神经网络的预测性能。
2024-12-16 06:15:00
908
原创 PSO优化灰色预测模型
灰色预测模型(Grey Model, GM)是一种基于系统灰色关系的预测方法,尤其适用于小样本、少信息的时间序列数据。参数的优化,能够有效提升灰色预测模型的预测精度,尤其在小样本和数据不完全的情况下表现优越。PSO能够通过全局搜索找到最优的参数组合,避免传统最小二乘法可能遇到的局部最优问题,并且具有较好的适应性。PSO优化灰色预测模型的核心思想是通过粒子群优化算法来调节灰色预测模型中的参数,从而提高其预测精度。模型中,这两个参数决定了灰色微分方程的解,从而影响预测精度。,从而提高灰色模型的预测准确性。
2024-12-16 05:45:00
1051
原创 GA优化BP神经网络预测
遗传算法是一种基于自然选择和遗传机制的全局优化算法,而反向传播神经网络则是常用的前馈神经网络,通过误差反向传播来训练模型。:根据预测结果与实际结果的差异,计算模型的性能指标,如均方误差(MSE)、准确率、召回率等,评估模型的预测效果。:通过GA优化BP神经网络的权重和偏置,遗传算法通过适应度函数评估每个个体,找到最适合的权重配置。:遗传算法优化的结果作为BP神经网络的初始权重输入,通过反向传播算法调整权重,进一步提升模型性能。:根据问题的特征,设计合适的BP神经网络结构,通常包括输入层、隐藏层和输出层。
2024-12-15 13:44:11
657
原创 数学建模问题中的多目标规划
在实际应用中,往往需要在多个冲突的目标之间进行权衡。常见的求解方法包括权重法、ε-约束法、聚集法等,此外,基于演化算法的多目标优化方法也得到了广泛的应用。多目标规划(Multi-Objective Optimization, MOO)是指在优化问题中同时优化多个相互冲突的目标函数的情况。多目标规划广泛应用于许多实际问题,如:资源分配、工程设计、供应链优化、项目调度、环境保护等。等函数来求解多目标优化问题,帮助决策者在多个目标之间找到最合适的折衷解。的解通常不再是唯一的,而是一个解的集合,称为。
2024-12-15 13:40:21
602
原创 数学建模问题中的整数规划
整数规划(Integer Programming,IP)是运筹学中的一种优化技术,广泛应用于数学建模问题,特别是当决策变量需要取整数值时。其核心问题是在线性规划(Linear Programming,LP)的框架下,约束条件和目标函数均为线性的,但要求决策变量取整数值,而不是实数值。整数规划可用于解决许多实际问题,如。
2024-12-15 13:34:15
494
原创 数学建模中随机森林分类
它通过构建多棵决策树并结合其结果进行预测,能够显著提升模型的准确性和鲁棒性。随机森林特别适用于分类和回归任务,广泛应用于许多实际问题中,如金融欺诈检测、疾病预测、图像识别等。在数学建模中的建模过程,涵盖其基本原理、数学公式和建模步骤。随机森林是一种集成学习方法,属于。
2024-12-15 13:30:50
354
原创 数据预处理(随机过采样、标签编码、独热编码、随机划分数据集、标准化)
在数据分析与机器学习建模中,数据预处理是确保数据质量和提升模型性能的关键步骤。以下是随机过采样、标签编码、独热编码、随机划分数据集和标准化的建模过程描述。通过这些预处理方法,可以为机器学习模型提供高质量的输入数据,提高模型的准确性、鲁棒性和泛化能力。这些步骤应根据数据特性和任务需求灵活组合与调整。独热编码用于将分类变量转化为稀疏矩阵表示,避免因整数编码产生的大小关系问题。标签编码适用于将分类变量转换为整数型编码。
2024-12-12 02:30:00
369
原创 基于逻辑回归的多分类问题
逻辑回归通常用于二分类问题,但通过适当扩展,可以应用于多分类问题。以下是基于逻辑回归的多分类问题建模过程,包括数学基础和实现步骤。通过以上步骤,逻辑回归可以有效地解决多分类问题,但在复杂场景下,通常需要结合特征工程或更复杂的模型(如神经网络)来提升性能。
2024-12-12 00:45:00
236
原创 Logistic回归求解人口增长
具有与之相似的数学基础。Logistic增长模型是一种非线性模型,能够很好地描述资源有限条件下的人口增长行为。Logistic回归是一种用于建模二元分类问题的统计方法,但在建模人口增长等现象时,采用的。以下是一个简单的 Python 实现,用于拟合 Logistic 增长模型并预测人口数量。通过 Logistic 增长模型,可以直观地理解和预测人口增长过程,并为决策提供定量支持。
2024-12-11 06:15:00
1031
原创 鲸鱼优化算法求解开放式车辆路径问题
开放式车辆路径问题(OVRP)是物流优化中的一种变体。与经典车辆路径问题(VRP)不同,开放式车辆路径问题允许车辆无需返回起点(仓库),即每辆车可以终止于最后一个服务点。其目标是设计最优的路径分配方案,满足所有客户的需求并最小化总成本(通常是总行驶距离)。鲸鱼优化算法是一种基于座头鲸捕食行为的群体智能优化算法,通过模拟鲸鱼的包围捕猎、螺旋气泡网攻击以及搜索猎物的行为来进行全局搜索和局部搜索。通过鲸鱼优化算法对开放式车辆路径问题的迭代优化,可高效地设计合理的路径方案,减少物流成本。
2024-12-11 01:00:00
920
原创 头脑风暴优化算法求解带时间窗和同时取送货的车辆路径问题
带时间窗和同时取送货的车辆路径问题(Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery, VRPTW-SPD)是物流配送优化中的一个复杂问题。头脑风暴优化算法是一种基于群体智能的优化算法,灵感来源于头脑风暴过程,通过个体间的交互和创新生成新的解,以逐步逼近最优解。通过头脑风暴优化算法对路径和分配方案的创新调整,可以高效地求解带时间窗和同时取送货的车辆路径问题。
2024-12-10 10:29:23
1050
原创 萤火虫算法求解订单分批问题
订单分批问题(Order Batching Problem, OBP)是物流和仓储优化中的重要问题,其目标是在一个仓库中将多个订单分组成批次,以最小化拣货路径总长度或完成时间。通过调整萤火虫算法的适应度函数和约束处理机制,可以灵活地应用于订单分批优化问题,尤其适合复杂仓储布局和动态需求环境。萤火虫算法是一种基于自然界萤火虫发光行为的群体智能优化算法,通过个体间的吸引和移动来优化问题。将订单分为若干批,最小化每批的路径总长度。
2024-12-10 10:25:27
547
原创 遗传算法求解带时间窗的车辆路径问题
VRPTW是一种扩展的车辆路径问题,其中不仅要求优化车辆的行驶路线以最小化总行驶距离,还需要满足客户指定的服务时间窗约束。通过合理设计个体编码、适应度函数和操作算子,遗传算法能够高效求解带时间窗的车辆路径问题,是解决物流优化问题的有效工具。遗传算法是一种启发式优化方法,模拟自然选择和遗传进化过程,适用于复杂的组合优化问题,如VRPTW。目标函数通常是最小化车辆的总行驶距离,并在满足约束条件的情况下,尽量减少所需车辆数量。最小化总行驶距离,满足所有时间窗和容量约束。
2024-12-09 15:01:18
1327
原创 模拟退火算法求解同时取送货的车辆路径问题
在VRPSPD中,车辆需要从一个仓库出发,沿途为客户提供服务,每个客户既有取货需求(货物从客户送回仓库)又有送货需求(货物从仓库送往客户)。通过在搜索过程中引入一定概率接受较差解,模拟退火算法能够跳出局部最优解并找到全局最优解。通过合理设计邻域结构和目标函数,以及引入高效的降温策略,模拟退火算法能够有效求解同时取送货的车辆路径问题,适用于物流配送等实际应用场景。:有一个仓库,4辆车,每辆车的最大容量为50。目标:最小化总行驶距离,满足取送货需求和容量约束。
2024-12-09 14:57:14
504
原创 灰狼优化算法求解多旅行商问题
灰狼优化算法(GWO)在求解多旅行商问题(mTSP)中表现出了较好的效果。通过模拟灰狼的群体捕猎行为,GWO能够在大规模问题中通过多次迭代逐步找到较优解。与TSP要求一个旅行商访问所有城市一次并返回起点不同,mTSP要求多个旅行商在多个起点出发,覆盖所有城市,并且每个旅行商都需要访问某些城市一次。mTSP的解空间是多个旅行商的路径集合,而GWO则可以通过模拟灰狼捕猎行为来探索这些路径。灰狼优化算法是模拟灰狼群体在捕猎过程中所表现出来的社会行为。GWO算法通过模拟灰狼的捕猎过程来实现搜索过程。
2024-12-08 05:30:00
780
原创 蚁群算法求解容量受限的车辆路径问题
在解决容量受限的车辆路径问题(CVRP)时,ACO能够通过模拟蚂蚁寻找食物的过程,通过信息素引导多次迭代,不断改进解的质量。蚂蚁在寻找食物的过程中会留下一种叫做信息素的物质,其他蚂蚁可以感知到这些信息素,并据此决定行走路径。(Capacitated Vehicle Routing Problem, CVRP)是经典的车辆路径问题(VRP)的一种扩展,其中要求每辆车在服务客户时不能超过其最大容量。给定一组客户,每个客户都有一定的需求量,同时有一组具有最大运输容量的车辆。
2024-12-07 09:00:00
873
原创 大规模邻域搜索算法求解旅行商问题
TSP要求找出一条路径,使得旅行商从一个城市出发,访问每个城市一次并仅一次,然后返回起始城市,且总行程最短。由于TSP问题的解空间庞大,特别是在城市数量很多时,暴力搜索所有可能解的时间复杂度是指数级的,因此需要启发式和近似算法来寻找较优解。
2024-12-07 07:30:00
1297
原创 变邻域搜索算法求解旅行商问题
变邻域搜索算法(VNS,Variable Neighborhood Search)是一种基于局部搜索的启发式算法,它通过在不同的邻域结构之间切换来逃避局部最优解,逐步改进解的质量。通过在多个邻域结构之间切换,VNS能够高效地跳出局部最优,提供优质的解。旅行商问题是经典的组合优化问题,目标是在给定的城市集和它们之间的距离下,找到一条最短路径,使得旅行商从一个城市出发,访问每个城市一次且仅一次,最后回到起始城市。变邻域搜索算法的核心思想是通过在多个邻域结构之间切换,来跳出局部最优解,并逐步找到全局最优解。
2024-12-06 07:30:00
1074
原创 混合粒子群算法求解TSP问题
混合粒子群算法(Hybrid Particle Swarm Optimization, HPSO)是一种结合粒子群优化(PSO)和其他优化技术(如局部搜索算法、遗传算法等)以求解复杂优化问题的方法。,混合粒子群算法通过在粒子群优化的基础上引入其他优化策略,可以提高算法的性能,避免陷入局部最优,并加快收敛速度。
2024-12-06 05:30:00
305
原创 GA优化后的RBF神经网络
遗传算法(Genetic Algorithm, GA)优化后的RBF(Radial Basis Function)神经网络是一种结合进化算法与神经网络的混合模型,用于改进RBF神经网络的性能。
2024-12-05 19:55:15
455
原创 基于广义回归神经网络货运量预测
是一种基于统计学原理的神经网络模型,广泛用于回归问题的预测。GRNN是一种非常灵活的非线性回归模型,能通过学习历史数据来预测新数据的输出。它与传统的神经网络(如BP神经网络)相比,具有更简洁的结构和较快的训练速度,且对数据的分布不太敏感。
2024-12-04 06:00:00
214
原创 HO-VMD-CNN西储大学轴承故障诊断
该方法旨在通过信号分解和深度学习的结合,提取更有效的特征来提高故障诊断的准确性。HO-VMD-CNN 通过高阶变分模态分解提取信号的不同频率成分,然后利用卷积神经网络自动提取这些模态中的空间特征,实现轴承故障的精准诊断。通过分解和深度学习的结合,该方法能够有效提高故障诊断的精度,特别是在复杂信号的分析和故障分类任务中表现出色。这种方法的优势在于它结合了信号处理和深度学习的优点,能够自动学习复杂信号中的有用特征,适用于工业设备的健康监测和故障预测。
2024-12-03 07:00:00
275
原创 基于单层竞争神经网络的患者癌症发病预测
是一种基于竞争学习的神经网络结构,通常用于无监督学习任务,尤其适用于模式分类和聚类问题。其核心思想是通过竞争机制,网络中的神经元通过相互竞争来对输入数据进行聚类和学习。
2024-12-03 06:00:00
711
原创 HO-VMD-TCN西储大学轴承故障诊断
HO-VMD-TCN方法是一种结合高阶变分模态分解(High-Order Variational Mode Decomposition, HO-VMD)与时序卷积网络(Temporal Convolutional Network, TCN)的轴承故障诊断方法。该方法特别适用于处理非线性和非平稳振动信号,通过频率分量的精确提取与时序模式的深度学习分析,提升故障诊断的准确性。
2024-12-02 11:53:07
574
1
原创 小波神经网络的时间序列预测
小波神经网络(Wavelet Neural Network, WNN)是一种结合小波变换与神经网络的模型,具有良好的非线性特征提取能力,广泛应用于时间序列预测任务。该方法首先通过小波变换对时间序列进行分解,将复杂的时间序列信号分解为不同频率的分量,从而在时间和频率域上提取特征。在预测过程中,小波神经网络通过输入分解后的特征序列,利用神经网络的学习能力进行建模和预测。这使得WNN在电力负荷预测、金融时间序列预测和环境数据建模等领域具有显著优势,能够提供更高的预测精度和更强的鲁棒性。
2024-12-02 11:34:35
592
PSO优化灰色预测模型
2024-12-01
GA优化BP神经网络预测
2024-12-01
数学建模中随机森林分类
2024-12-01
数据预处理(随机过采样、标签编码、独热编码、随机划分数据集、标准化)
2024-12-01
Logistic回归求解人口增长
2024-12-01
萤火虫算法求解订单分批问题
2024-12-01
头脑风暴优化算法求解带时间窗和同时取送货的车辆路径问题
2024-12-01
PSO优化BP神经网络
2024-12-01
数学建模问题中的多目标规划
2024-12-01
数学建模问题中的整数规划
2024-12-01
基于逻辑回归的多分类问题
2024-12-01
CNN图像处理图像识别分类
2024-12-01
鲸鱼优化算法求解开放式车辆路径问题
2024-12-01
遗传算法求解带时间窗的车辆路径问题
2024-12-01
模拟退火算法求解同时取送货的车辆路径问题
2024-12-01
蚁群算法求解容量受限的车辆路径问题
2024-12-01
大规模邻域搜索算法求解旅行商问题
2024-12-01
变邻域搜素算法求解旅行商问题
2024-12-01
灰狼优化算法求解多旅行商问题
2024-12-01
数学建模问题中的经典线性规划
2024-12-01
实现自动控制系统校正建模
2024-12-01
HO-VMD-CNN西储大学轴承故障诊断
2024-12-01
HO-VMD-TCN西储大学轴承故障诊断
2024-12-01
锅炉控制系统建模仿真测试
2024-12-01
遗传算法特征筛选和GA-BP
2024-12-01
实现指纹图像增强APP
2024-12-01
6自由度机械臂运动学和路径规划
2024-12-01
齿轮故障诊断(DNN和CNN)
2024-12-01
最小拍无纹波控制建模仿真
2024-12-01
LSTM多输入单输出预测
2024-12-01
RNN多输入单输出预测
2024-12-01
CNN多输入单输出预测
2024-12-01
数学建模高斯消去法求解方程组
2024-12-01
实现图片数据提取重绘问题
2024-12-01
数学建模问题中阻滞增长模型
2024-12-01
数学建模SOM神经网络聚类
2024-12-01
数学建模蒙特卡洛模拟航班问题
2024-12-01
数学建模问题中的核主成分分析KPCA
2024-12-01
数学建模MK突变趋势检验
2024-12-01
RBF神经网络自适应控制
2024-12-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人