基于深度学习的电车电池管理系统|Python读取NASA电池数据集并提取特征

处理数据集

NASA 1. BatteryAgingARC-FY08Q4 数据集介绍

数据说明:
在室温下,对一组四节锂离子电池(5 号、6 号、7 号和 18 号)进行了 3 种不同的运行曲线(充电、放电和阻抗)测试。**充电以 1.5A 的恒定电流 (CC) 模式进行,直到电池电压达到 4.2V,然后继续以恒定电压 (CV) 模式进行,直到充电电流降至 20mA。**电池 5、6、7 和 18 以 2A 的恒定电流 (CC) 放电,直到电池电压分别降至 2.7V、2.5V、2.2V 和 2.5V。阻抗测量是通过电化学阻抗谱(EIS)频率扫描(0.1Hz 至 5kHz)进行的。反复的充放电循环会导致电池加速老化,而阻抗测量则能让人深入了解随着老化进程而变化的电池内部参数。实验在电池达到寿命终止(EOL)标准时停止,即额定容量下降 30%(从 2Ahr 降至 1.4Ahr)。该数据集可用于预测剩余电量(给定放电周期)和剩余使用寿命(RUL)。
文件:
B0005.mat 5 号电池数据
B0006.mat 6 号电池数据
B0007.mat 7 号电池数据
B0018.mat #18号电池数据
数据结构:
循环:包含充电、放电和阻抗操作的顶层结构数组
类型: 操作类型,可以是充电、放电或阻抗
ambient_temperature:环境温度(摄氏度)
time:循环开始的日期和时间,采用 MATLAB 日期矢量格式
data:包含测量数据的数据结构
对于充电,字段如下
电压测量值:电池端电压(伏特)
电流测量值:电池输出电流(安培)
Temperature_measured: 电池温度(摄氏度)
Current_charge:充电器测得的电流(安培)
Voltage_charge:充电器测得的电压(伏特)
Time:循环时间矢量(秒)
放电时的字段为
Voltage_measured: 电池端电压(伏特)
电流测量值:电池输出电流(安培)
Temperature_measured: 电池温度(摄氏度)
Current_charge:负载时测得的电流(安培)
Voltage_charge:负载时测得的电压(伏特)
Time:循环时间矢量(秒)
容量:放电至 2.7V 时的电池容量(安时
阻抗的字段为
Sense_current:感应支路中的电流(安培)
Battery_current:电池支路中的电流(安培)
电流比: 上述电流之比
Battery_impedance:根据原始数据计算得出的电池阻抗(欧姆
Rectified_impedance: 经过校准和平滑处理的电池阻抗(欧姆)
Re:估计的电解质电阻(欧姆)
Rct:估计的电荷转移电阻(欧姆)


【已复现并在基础上修改】学习开源项目 Battery-Health-Prophecy-main

ABSTRACT

This project utilizes battery datasets from NASA, focusing on measured variables like Voltage, Charge, Current, Temperature, Time, and Capacity. It extracts health indices (HI’s) from battery datasets, emphasizing Charge and Discharge cycles. The project involves capacity extraction, health indices extraction, and correlation analysis to predict battery State of Health (SOH).
该项目利用美国国家航空航天局(NASA)的电池数据集,重点关注电压、充电、电流、温度、时间和容量等测量变量。它从电池数据集中提取健康指数(HI),重点是充放电周期。该项目包括容量提取、健康指数提取和相关性分析,以预测电池的健康状况(SOH)。


DATASET

The research uses NASA’s battery data, analyzing the aging of different batteries (B0005, B0006, B0007, B0018) through charging, discharging, and impedance tests. Each cycle, including charge, discharge, and impedance testing, provides data on voltage, time, charge, current, and temperature. The project focuses on organizing and understanding these cycles for comprehensive battery analysis.

这项研究利用美国国家航空航天局的电池数据,通过充电、放电和阻抗测试,分析不同电池(B0005、B0006、B0007、B0018)的老化情况。每个周期,包括充电、放电和阻抗测试,都会提供有关电压、时间、充电、电流和温度的数据。该项目的重点是组织和理解这些循环,以便对电池进行全面分析。

充电期间(charge)电压与时间的图像
[图片]

充电期间(charge)电流与时间的图像
[图片]


OBJECTIVE

The main objective is to find correlation values between Health Indices (HI’s) and Capacity values. Using Pearson and Spearman methods, the project evaluates the applicability of specific health indices for prediction. Creating a correlation table for all datasets is crucial for predicting the State of Health (SOH) of a battery.

主要目标是找到健康指数(HI)与能力值之间的相关值。该项目使用皮尔逊和斯皮尔曼方法,评估特定健康指数对预测的适用性。为所有数据集创建相关表对于预测电池的健康状况(SOH)至关重要。


EXTRACTION

The project extracts capacity values from the discharging process and three specific Health Indices from the charging processes (HI1, HI2, HI3). The focus is on clean data preparation and choosing HI’s related to battery health. Correlation values help identify relevant HI’s strongly linked to battery health, aiding accurate predictions.

该项目从放电过程中提取容量值,从充电过程中提取三个特定的健康指数(HI1、HI2、HI3)。重点是清洁数据准备和选择与电池健康相关的健康指数。相关值有助于确定与电池健康密切相关的相关健康指数,从而帮助进行准确预测。


HI1 Extraction

HI1 involves time differences related to voltage values. Specific voltage values (3.9 and 4.2) in each charging cycle are used to calculate time differences, showing a decreasing trend across cycles.

HI1 涉及与电压值相关的时间差。每个充电周期的特定电压值(3.9~ 4.2)用于计算时差,显示出各周期的递减趋势。

Difference between 4.2index time value and 3.9index time value
4.2V ~ 4.3V的时间与3.9V ~ 4.1V的时间之间的差值
[图片]

数据清洗:
小于900s的都变成2550s
[图片]


HI2 Extraction

HI2 focuses on voltage differences related to time values. By updating time values corresponding to 3.9 voltage points, new indexes are found in each cycle, revealing fluctuations between starting and ending points.

HI2 主要关注与时间值相关的电压差异。通过更新与 3.9 个电压点相对应的时间值,在每个周期中都能发现新的指数,揭示起点和终点之间的波动。

Difference between 3.9index voltage value and after 500 seconds
3.9V ~ 4.1V 之间的电压与 500 秒后的电压的差值
[图片]

数据清洗:

  1. 大于0.20V的全部变为0.07V
  2. 前五个改为0.05V
    [图片]

HI3 Extraction

HI3 is based on current and time, considering the drop in current between 1.5A and the current after 1000 seconds during the constant voltage charging phase.

HI3 基于电流和时间,1.4A ~ 1.5A 之间的电流与 1000 秒后的电流差值。

[图片]

数据清洗:

  1. 将>1.0A的数据设置为0.9A
  2. 小于0.5A的全部变为0.7A
    [图片]

CORRELATION

Correlation analysis is conducted using Pearson and Spearman methods to understand connections between Health Indices and battery capacity. A correlation value of 0.95 or higher indicates the importance of specific HI’s for predicting battery health. This threshold guides the focus on relevant HI’s strongly linked to battery health.

使用皮尔逊和斯皮尔曼方法进行相关性分析,以了解健康指数与电池容量之间的联系。0.95
或更高的相关值表明特定健康指数对预测电池健康状况的重要性。这一临界值引导我们关注与电池健康密切相关的相关健康指数。

在这里插入图片描述

[图片]


LICENSE

This project is licensed under the MIT License.


CONCLUSION

The project concludes by exploring the relationship between Health Indices and battery capacity. Both Pearson and Spearman correlation analyses reveal a correlation ranging between -0.9 and 0.9 concerning HI and battery capacity. The findings provide insights into the complex relationship between HI and battery capacity, enhancing battery usage efficiency across diverse applications.

项目最后探讨了健康指数与电池容量之间的关系。Pearson 和 Spearman 相关性分析表明,健康指数与电池容量之间的相关性介于
-0.9 和 0.9 之间。研究结果有助于深入了解健康指数与电池容量之间的复杂关系,从而提高各种应用中的电池使用效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

提拉米苏不吃肉

你的鼓励是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值