具体详情听视频讲解:https://www.bilibili.com/video/BV17z421S7kR
关注微信公众号:爱数模的小驴获取更多资料
以下是题目的整体思路
问题1思路:( 建立数学模型,分析如果要精准确定空中单个残骸发生音爆时的位置坐标(经度、纬度、高程)和时间,至少需要布置几台监测设备?假设某火箭一级残骸分离后,在落点附近布置了7台监测设备,各台设备三维坐标(经度、纬度、高程)、音爆抵达时间(相对于观测系统时钟0时)如下表所示:)
整体思路解析
1、量化各个监测点与音爆位置的距离
2、根据距离公式构建非线性方程组
3、根据非线性方程组给出对应的求解算法
在三维空间中,对于点 (x1, y1, z1)
和 (x2, y2, z2)
,欧氏距离的公式为:
[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} ]
在更高维空间中,该公式可以推广为:
对于两个n维点 ( \mathbf{p} = (p_1, p_2, \ldots, p_n) ) 和 ( \mathbf{q} = (q_1, q_2, \ldots, q_n) ),欧氏距离 ( d(\mathbf{p}, \mathbf{q}) ) 定义为:
[ d(\mathbf{p}, \mathbf{q}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \ldots + (q_n - p_n)^2} ]
或者,使用向量的点积和模长来表示:
[ d(\mathbf{p}, \mathbf{q}) = \sqrt{|\mathbf{p} - \mathbf{q}|^2} = \sqrt{(\mathbf{p} - \mathbf{q}) \cdot (\mathbf{p} - \mathbf{q})} ]
注意,上述距离公式是基于欧氏空间的,而在非欧几里得几何(如球面几何或弯曲时空)中,距离的计算方式会有所不同。
% 定义两个三维点
p1 = [x1, y1, z1]; % 例如 x1 = 1, y1 = 2, z1 = 3
p2 = [x2, y2, z2]; % 例如 x2 = 4, y2 = 6, z2 = 8
% 计算两点之间的欧氏距离
distance_3d = norm(p2 - p1);
% 或者使用更明确的公式
% distance_3d = sqrt((x2 - x1).^2 + (y2 - y1).^2 + (z2 - z1).^2);
% 输出结果
disp(['The distance between the two points in 3D is: ', num2str(distance_3d)]);
非线性方程组给出对应的求解算法
-
牛顿法(Newton's Method):
牛顿法是一种在实数域和复数域上近似求解方程的方法。对于非线性方程组,我们可以将其扩展为牛顿-拉夫森方法(Newton-Raphson method)。这种方法需要计算雅可比矩阵(Jacobian matrix)和它的逆矩阵。算法步骤:
- 初始化一个近似解向量
x0
。 - 迭代计算:
xk+1 = xk - J(xk)^-1 * F(xk)
,其中F(x)
是方程组,J(x)
是F(x)
的雅可比矩阵。 - 当
||F(xk)||
(或||xk+1 - xk||
)小于某个预设的阈值时,停止迭代。
- 初始化一个近似解向量
-
拟牛顿法(Quasi-Newton Methods):
拟牛顿法是为了避免计算雅可比矩阵的逆而设计的。它们通过近似雅可比矩阵的逆来更新解向量。常见的拟牛顿法有:
- DFP(Davidon-Fletcher-Powell)方法
- BFGS(Broyden-Fletcher-Goldfarb-Shanno)方法
-
最小二乘法(Least Squares Methods):
如果方程组是超定的(即方程数量多于未知数数量),我们可以使用最小二乘法来找到使残差平方和最小的解。这通常涉及到求解正规方程(normal equations)。 -
梯度下降法(Gradient Descent):
梯度下降法是一种优化算法,也可以用于求解非线性方程组。它通过沿着负梯度方向迭代更新解向量来最小化目标函数(在这种情况下是方程组的残差平方和)。 -
信赖域方法(Trust Region Methods):
信赖域方法是一种迭代方法,它试图在每一步中在一个小的信赖域内找到一个好的解。这种方法在非线性优化中很常见,并且对于非线性方程组也适用。 -
遗传算法(Genetic Algorithms):
遗传算法是一种启发式搜索算法,它模拟了自然选择和遗传学中的原理。虽然这种方法可能不如上述方法精确,但它对于复杂和难以建模的问题可能更有效。 -
粒子群优化(Particle Swarm Optimization, PSO):
粒子群优化是一种基于群体智能的优化算法,它通过模拟鸟群或鱼群的社会行为来寻找最优解。这种方法也适用于求解非线性方程组。
问题2、3思路:火箭残骸除了一级残骸,还有两个或者四个助推器。在多个残骸发生音爆时,监测设备在监测范围内可能会采集到几组音爆数据。假设空中有4个残骸,每个设备按照时间先后顺序收到4组震动波。建立数学模型,分析如何确定监测设备接收到的震动波是来自哪一个残骸?如果要确定4个残骸在空中发生音爆时的位置和时间,至少需要布置多少台监测设备?
整体思路解析
1、数据分类
2、根据分类结果使用问题1的模型求解引爆位置
关于音爆数据分类,需要找到数据的特点,依据数据的特点提出数据分类的算法
1、对于4组音数据满足4组不同的非线性方程组;
2、由非线性方程组的特征性可知,满足非线性方程组的解为近似解
3、若将最终确认的数据组代入非线性方程组时 存在整体误差最小的可能性
4、基于此可设数据分类算法;
算法设计思路
- 数据准备:
- 你有4组音数据,每组数据对应一个非线性方程组。
- 假设你已经有了这些非线性方程组的定义。
- 初始化:
- 设定一个误差阈值,用于判断解的质量。
- 设定一个迭代次数上限,防止无限循环。
- 解非线性方程组:
- 对于每一组音数据,使用数值方法(如牛顿法、拟牛顿法、梯度下降法等)来求解对应的非线性方程组。
- 由于是非线性方程组,解可能是近似解,因此需要记录每次迭代的误差。
- 评估误差:
- 计算每个解对应的整体误差(例如,所有方程残差的平方和)。
- 找出整体误差最小的解及其对应的数据组。
- 数据分类:
- 基于整体误差最小的原则,将音数据分为不同的类别。
- 可以设定一个误差阈值,如果某组数据的解的整体误差小于这个阈值,则认为它属于某个特定类别。
- 迭代优化(可选):
- 如果需要进一步提高分类的准确性,可以迭代优化算法。
- 例如,可以尝试不同的数值方法或调整算法的参数。
- 结果输出:
- 输出分类结果,包括每个数据组所属的类别和对应的整体误差。
# 伪代码,不是可直接运行的代码 # 定义非线性方程组(这里只是示意,具体方程需要根据实际情况定义) def nonlinear_equations(data, params): # 返回方程组及其雅可比矩阵(如果需要的话) pass # 数值求解方法(这里以牛顿法为例) def newton_method(equations, initial_guess, max_iter, tol): # 使用牛顿法求解非线性方程组 pass # 数据分类算法 def data_classification(datasets, equations_funcs, max_iter, tol, error_threshold): classifications = {} min_error = float('inf') best_dataset = None for i, dataset in enumerate(datasets): equations = equations_funcs[i](dataset) # 获取当前数据对应的方程组 solution, error = newton_method(equations, initial_guess, max_iter, tol) # 求解方程组 if error < min_error: min_error = error best_dataset = dataset classifications[i] = {'dataset': dataset, 'solution': solution, 'error': error} # 如果误差小于阈值,可以考虑直接将该数据分类到某个特定类别 if error < error_threshold: # ... 执行分类操作 ... pass # 输出最佳数据集和分类结果 print(f"Best dataset: {best_dataset}, Error: {min_error}") print("Classifications:", classifications) # 示例使用 datasets = [...] # 4组音数据 equations_funcs = [...] # 4组对应的非线性方程组定义 max_iter = 100 # 最大迭代次数 tol = 1e-6 # 误差容忍度 error_threshold = 1e-3 # 误差阈值,用于分类 data_classification(datasets, equations_funcs, max_iter, tol, error_threshold)
具体视频讲解:https://www.bilibili.com/video/BV17z421S7kR/?share_source=copy_web
关注微信公众号:爱数模的小驴
问题4思路:假设设备记录时间存在0.5 s的随机误差,请修正问题2所建立的模型以较精确地确定4个残骸在空中发生音爆时的位置和时间。通过对问题3表中数据叠加随机误差,给出修正模型的算例,并分析结果误差。如果时间误差无法降低,提供一种解决方案实现残骸空中的精准定位(误差km),并自行根据问题3所计算得到的定位结果模拟所需的监测设备位置和音爆抵达时间数据,验证相关模型。
-
整体思路解析
1、数据分类
2、根据分类结果使用问题1的模型求解引爆位置
关于音爆数据分类,需要找到数据的特点,依据数据的特点提出数据分类的算法
1、对于4组音数据满足4组不同的非线性方程组;
2、由非线性方程组的特征性可知,满足非线性方程组的解为近似解
3、若将最终确认的数据组代入非线性方程组时 存在整体误差最小的可能性
4、基于此可设数据分类算法;
- 输出分类结果,包括每个数据组所属的类别和对应的整体误差。