目录
一、二重积分的概念
定义:设一个函数,在有界闭区域
(一个面)上有定义,
将区域任意分成
个小闭区域(微分),其中
表示第
个小区域,也表示它的面积,
在每个范围内,任取一点
,作乘积
并在区域内求和,
,
使每个区域都趋于无穷小,求极限,若极限存在,则称此极限值为函数在区域上的二重积分,记为
。
二、性质
1、求区域面积,,A为区域
的面积;
2、可在区域内进行二重积分的函数,在区域
内必有界;
3、二重积分的线性性质;
4、二重积分的可加性,可以把积分区域拆分,分别积分。;
5、积分的保号性:
(1)比较函数大小,若在区域内有
,则在区域内的积分的大小关系不变;
(2)估值定理,若在区域上,
,则有
,
为区域面积,一般用于证明;
(3),几何意义相当于有高度的正负,取绝对值即为体积;
6、中值定理:设函数在闭区域
上连续,A为区域
的面积,则在
上至少存在一点
,使得
,对比
;
三、对称性
二重积分的几何背景是曲顶柱体的体积,是利用了微分的方法,把不规则的曲顶柱体分成一个个近似小长条柱体,再把区域内所有的部分加起来,得到整个曲顶柱体的体积。基于这个思路,对二重积分的对称性展开讨论。
1、普通对称性(奇偶性)
(1)设区域关于
轴对称,取对称点
,对称点处的高分别为
,当高相等时,对称两边体积相同,只需计算一边;当高互为相反数时,“体积”相反,加起来正好为0;
(2)区域关于轴对称时也是同理,在计算前应先考虑能否利用对称性简化计算;
(3)在三重积分时也具有这样的性质。
2、轮换对称性
若把字母对调之后,区域
不变,或区域
关于
对称,则
主要用在凑出等便于利用极坐标系简化计算
四、计算
1、直角坐标系
(1)先积后
,
(2)先积x后y,
2、极坐标
(扇形所对应的弧长,)
3、极坐标与直角坐标选择的一般原则
看被积函数是否含有等可简化计算,积分区域是否为圆或圆的一部分。原则上来说直角坐标系和极坐标系可以互化,只是计算量有时候某一个坐标系会方便一点。
4、极坐标直角坐标系互化
5、积分次序
在遇到原函数无法表达出来的时候,可以试着改变一下积分次序,换一个字母先求原函数可能更加简便一点。
6、二重积分解决一元积分问题
持续补充中