HOW - DP 动态规划系列(二)

通过几个算法的学习,加深理解和掌握动态规划。

一、不同路径1

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例1:
输入:m = 3, n = 7
输出:28

示例2:
输入:m = 2, n = 3
输出:3

解释: 从左上角开始,总共有 3 条路径可以到达右下角:

  • 向右 -> 向右 -> 向下
  • 向右 -> 向下 -> 向右
  • 向下 -> 向右 -> 向右

根据场景分析,想要走到右下角的终点,它的前一条路径来源只有两种,上方或者左方:
请添加图片描述
每一个网格都是一样的,那其实就有一个状态转移的过程,可以考虑动态规划求解。

相比系列一遇到的问题,这个问题想要利用动态规划,dp[] 是需要构造二维的才行。

const uniquePaths = (m, n) => {
	// m: row
	// n: column

	// 1. 确定 dp[i][j] 含义:到达网格 [row=i][column=j] 的路径数目
	// 2. 确定递推公式:dp[i][j] = dp[i-1][j] + dp[i][j-1] 即 dp[i][j]都是从其上方和左方推导而来
	// 3. 初始化:dp[i][0] 都是1 dp[0][j] 也都是1 这些位置一定只有1条路径
	// 4. 遍历顺序:从左到右一层一层遍历即可
	// 5. 打印 dp[]
	const dp = Array(m).fill().map(item => Array(n));
	for (let i = 0; i < m; i++) {
		dp[i][0] = 1;
	}
	for (let j = 0; j < n; j++) {
		dp[0][j] = 1;
	}
	for (let i = 1; i < m; i++) {
		for (let j = 1; j < n; j++) {
			dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
		}
	}
	return dp[m - 1][n - 1];
}
console.log(uniquePaths(3, 7)); // 28

二、不同路径2

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?网格中的障碍物和空位置分别用 1 和 0 来表示。

示例1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  • 向右 -> 向右 -> 向下 -> 向下
  • 向下 -> 向下 -> 向右 -> 向右

根据场景分析,有障碍相比没有障碍的情况,无非就是对应的 dp[i][j] = 0,即走不通。

const uniquePaths = (obstacleGrid) => {
	const m = obstacleGrid.length;
	const n = obstacleGrid[0].length;

	const dp = Array(m).fill().map(item => Array(n));
	for (let i = 0; i < m; i++) {
		// 有阻碍之后剩下的就不用赋值了 通通为0
		if (obstacleGrid[i][0] === 1) {
			break;
		}
		dp[i][0] = 1;
	}
	for (let j = 0; j < n; j++) {
		// 有阻碍之后剩下的就不用赋值了 通通为0
		if (obstacleGrid[0][j] === 1) {
			break;
		}
		dp[0][j] = 1;
	}
	for (let i = 1; i < m; i++) {
		for (let j = 1; j < n; j++) {
			dp[i][j] = obstacleGrid[i][j] === 1 ? 0 : dp[i - 1][j] + dp[i][j - 1];
		}
	}
	return dp[m - 1][n - 1];
}
console.log(uniquePaths([[0,0,0],[0,1,0],[0,0,0]])); // 2

三、整数拆分

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。返回你可以获得的最大乘积。

示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
说明: 你可以假设 n 不小于 2 且不大于 58。

这个问题应该直击要害,应该尽量拆成数值近似相等的几个数,这样才会得到最大的乘积。比如 10 = 3 + 3 + 410 = 5 + 5 好。

进一步分析,对于 10,依赖于 2 和 8 的状态,8 依赖于 2 和 6 的状态,6 依赖于 2 和 4 的状态,4 依赖于 2 和 2 的状态,可以找到一个递推关系。说明该题可能可以用动态规划来解决了。

这道题相比前面的几个题目,递推公式没有那么好推导出来了。需要思考一下。

首先,可以想 dp[i]最大乘积是怎么得到的呢?其实可以从1遍历 j,然后有两种渠道得到dp[i]:

  • 一个是 j * (i - j) 直接相乘
  • 一个是 j * dp[i - j],相当于是继续拆分 (i - j)

比如 i = 6 拆成两个数时:

j=1,(i-j)=5
j=2,(i-j)=4
j=3,(i-j)=3
j=4,(i-j)=2
j=5,(i-j)=1

在这个情况 dp[i] = j * (i - j)

那拆成三个数及以上呢?脑子转得快的同学已经想到了,没错,就是 dp[i] = j * dp[i - j],相当于对 i-j 进行进一步拆分。对这个拆分不理解的话,可以回想 dp 数组的定义。

// 1. 确定 dp[i] 含义:i 拆分后得到的最大的乘积
// 2. 确定递推公式:dp[i] = Math.max(dp[i], j * dp[i-j], j * (i - j));
// 3. 初始化 dp[2] = 1 因为最基本的 2 = 1 + 1 且 dp[0] 和 dp[1] 都没有意义
// 4. 确定遍历顺序
// 5. 打印 dp[]
const integerBreak = (n) => {
	let dp = new Array(n + 1).fill(0);
	dp[2] = 1;
	for (let i = 3; i <= n; i++) {
		// 根据前面分析 这里遍历到一半即可(优化点)
		// for (let j = 1; j < i; j++)
		for (let j = 1; j <= i / 2; j++) {
			dp[i] = Math.max(dp[i], j * dp[i-j], j * (i - j));
			// 为什么 dp[i] 也要?
			// 比如先固定了i=3 然后j去遍历去拆分这个3
			// 那在这个内循环过程其实会得到多次 dp[i],所以也需要去 dp[i] 最大值
		}
	}
	return dp[n];
}
console.log(integerBreak(10)); // 36

四、不同的二叉搜索树(难点)

给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

首先,先来了解一下什么是二叉搜索树。

二叉搜索树(Binary Search Tree,BST)是一种二叉树的特殊形式,它具有以下性质:

  1. 对于二叉搜索树中的每个节点,其左子树中的所有节点的值小于该节点的值。
  2. 对于二叉搜索树中的每个节点,其右子树中的所有节点的值大于该节点的值。
  3. 左右子树也分别为二叉搜索树。

这个性质保证了二叉搜索树的有序性,使得在二叉搜索树中进行搜索、插入和删除操作具有较高的效率。由于其有序性质,二叉搜索树常用于实现一些基于有序数据的操作,例如搜索、插入、删除等。常见的应用包括集合、映射等数据结构的实现。

以下是一个二叉搜索树的示例:

      6
     / \
    4   8
   / \ / \
  2  5 7  9

先分析题目场景,当 n = 1:有1种

    1

n = 2:有2种

      2
     /
    1
    或者
      2
       \
        1

n = 3:有5种

      1
       \
        3
       /
     2
    或者
      1
       \
        2
          \
           3
	或者
      2
     /  \
    1   3
	或者
      3
     /
    2
   /
 1
	或者
      3
     /
    1
      \
       2

可以发现,n = 3 似乎跟 n = 1 和 n = 2 有一定关系:头节点为1 + 头节点为2 + 头节点为3的情况之和。

对于头节点为1时,有:左子树0节点 * 右子树2节点

对于头节点为2时,有:左子树1节点 * 右子树1节点

对于头节点为3时,有:左子树2节点 * 右子树0节点

可以进一步发现,左子树0节点的情况就是 n = 0 的情况;右子树2节点就是 n=2;左子树1节点和右子树1节点都是 n=1;左子树2节点就是 n=2;右子树0节点就是 n=0。

得到递推公式:dp[3] = (dp[0] * dp[2]) + (dp[1] * dp[1]) + (dp[2] + dp[0])

进一步分析,我们回到 dp[i],也就是会等于 头节点为1的情况+头节点为2的情况+头节点为3的情况+头节点为4…

也就是要枚举所有以j为头节点的情况,那如果以 j 为头节点,它的左子树将会有 j-1 个节点(因为二叉搜索树,比它小的都会在左边),它的右子树将会有 i-j 个。即有 dp[i] * dp[i-j] 种(左右子树相乘)。

最后得到 dp[i] += dp[j-1] * dp[i-j]。因为遍历j时是从1~i,需要求和,即当头节点为1,头节点为2,头节点为…,才是得到所有场景。

// 1. 确认 dp[i] 含义:当为i,有 dp[i] 种不同的二叉树
// 2. 确认递推公式:
// 3. 状态初始化
// 4. 确认循环顺序
// 5. 打印 dp[]
const numTrees = (n) => {
	let dp = new Array(n+1).fill(0);
	dp[0] = 1;
	dp[1] = 1;
	for(let i = 2; i <= n; i++) {
		for(let j = 1; j <= i; j++) {
			// 遍历不同的 j 需要把所有头节点的情况加起来
			dp[i] += dp[j-1] * dp[i-j];
		}
	}
	return dp[n];
}
  • 7
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值