一、导入数据
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
import os,PIL,random,pathlib
data_dir = './4-data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames
total_datadir = 'd:/Desktop/deep_learning/'
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
total_data.class_to_idx
1.划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
train_size,test_size
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
二、构建简单的CNN网络
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.fc1 = nn.Linear(24*50*50, len(classeNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
model
三、训练模型
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:60.2%, Train_loss:0.709, Test_acc:55.0%,Test_loss:0.849
cpu
cpu
Epoch: 2, Train_acc:67.4%, Train_loss:0.604, Test_acc:66.4%,Test_loss:0.586
cpu
cpu
Epoch: 3, Train_acc:69.4%, Train_loss:0.592, Test_acc:68.3%,Test_loss:0.629
cpu
cpu
Epoch: 4, Train_acc:75.0%, Train_loss:0.519, Test_acc:68.5%,Test_loss:0.588
cpu
cpu
Epoch: 5, Train_acc:76.9%, Train_loss:0.491, Test_acc:64.3%,Test_loss:0.727
cpu
cpu
Epoch: 6, Train_acc:79.3%, Train_loss:0.457, Test_acc:76.5%,Test_loss:0.513
cpu
cpu
Epoch: 7, Train_acc:82.0%, Train_loss:0.421, Test_acc:70.6%,Test_loss:0.585
cpu
cpu
Epoch: 8, Train_acc:83.0%, Train_loss:0.407, Test_acc:68.3%,Test_loss:0.601
cpu
cpu
Epoch: 9, Train_acc:84.6%, Train_loss:0.394, Test_acc:71.1%,Test_loss:0.548
cpu
cpu
Epoch:10, Train_acc:86.1%, Train_loss:0.370, Test_acc:76.9%,Test_loss:0.467
cpu
cpu
Epoch:11, Train_acc:87.2%, Train_loss:0.353, Test_acc:77.4%,Test_loss:0.469
cpu
cpu
Epoch:12, Train_acc:88.3%, Train_loss:0.338, Test_acc:79.5%,Test_loss:0.450
cpu
cpu
Epoch:13, Train_acc:89.5%, Train_loss:0.324, Test_acc:80.9%,Test_loss:0.438
cpu
cpu
Epoch:14, Train_acc:90.7%, Train_loss:0.311, Test_acc:82.3%,Test_loss:0.430
cpu
cpu
Epoch:15, Train_acc:90.7%, Train_loss:0.305, Test_acc:83.4%,Test_loss:0.429
cpu
cpu
Epoch:16, Train_acc:91.2%, Train_loss:0.290, Test_acc:83.4%,Test_loss:0.422
cpu
cpu
Epoch:17, Train_acc:92.4%, Train_loss:0.276, Test_acc:82.1%,Test_loss:0.430
cpu
cpu
Epoch:18, Train_acc:92.6%, Train_loss:0.267, Test_acc:82.5%,Test_loss:0.417
cpu
cpu
Epoch:19, Train_acc:92.4%, Train_loss:0.264, Test_acc:83.2%,Test_loss:0.412
cpu
cpu
Epoch:20, Train_acc:93.5%, Train_loss:0.247, Test_acc:81.6%,Test_loss:0.424
Done
Process finished with exit code 0
这个图这么崎岖的原因可能是测试集的样本量太少?
四、指定图片进行预测
from PIL import Image
classes = list(total_data.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
# plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output,1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./4-data/Monkeypox/M01_01_00.jpg',
model=model,
transform=train_transforms,
classes=classes)
五、保存并加载模型
# 模型保存
PATH = './model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
六、个人总结
本节的要求是保存效果最好的模型,由于我在我的小小笔记本跑这个深度学习,内存不太够,而且还没有GPU,只能用CPU跑,汗颜……
所以只换了一个参数,分别是learn_rate=1e-3,optimizer_type = torch.optim.Adam,这个搭配的效果更好一些(但是咩有截图,再次流汗黄豆……),以上展示的是learn_rate=1e-4,optimizer_type = torch.optim.sdg,准确率稍微低一点点吧。
本节学会了如何调整模型的参数,观察不同参数会使模型的准确率发生什么样的变化,还是挺有趣的。
此外,还学会了如何保存效果最好的参数,并如何将参数加载到模型中!