- 博客(1)
- 收藏
- 关注
多维实高斯、复高斯随机变量的概率密度函数的推导
1)多维实数高斯随机变量PDF表达式的证明过程,并讨论其协方差矩阵R具备哪些特性,如Toeplitz特性等。
2)复高斯随机变量PDF表达式的证明过程,并讨论其推导中的假设条件在雷达、通信信号传输模型中是否成立。
3)多维复数高斯随机变量PDF表达式的证明过程,并讨论其协方差矩阵M具备哪些特性
对上述3个问题进行解答,总结在文档中。
2024-09-30
目标跟踪+滤波技术+卡尔曼滤波(KF,EKF,UKF)和粒子滤波
跟踪滤波实现了功能:①平滑了测量数据,改善了对当前时刻k的状态估计,这一步可以叫“更新”。②根据当前的状态估计对下一刻k+1时刻进行状态估计,为下一次测量做准备,这一步称之为“预测”。当前雷达跟踪领域常用的滤波器有alpha-beta滤波器、alpha-beta-gamma滤波器、卡尔曼滤波器(Kalman filtering,KF)、扩展卡尔曼滤波器(Extended Kalman filter,EKF)、无迹卡尔曼滤波器(Untraced Kalman filter,UKF)和粒子滤波器(Particle filter,PF)等等其他新型滤波器。
在目标跟踪中,由于误差的存在,需要合适的滤波技术进行抑制,同时使用扩展卡尔曼滤波和无迹卡尔曼滤波,解决模型的非线性问题。进一步,将粒子滤波应用于非线性非高斯模型下,通过仿真验证了无迹卡尔曼滤波和粒子滤波具有更优良的跟踪性能。
粒子滤波部分有待改进,期待指正!
2024-07-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人