MATLAB实现用有限差分法模拟三维对流扩散方程

MATLAB实现用有限差分法模拟三维对流扩散方程


前言

题目引入:

背景:地下水污染物的扩散和迁移直接影响水质安全。
任务:基于二维或三维Advection-Dispersion方程,建立地下水污染物迁移模型。
要求:使用MATLAB实现数值解法(如有限差分法)分析不同条件下污染物的扩散情况。

一、三维对流扩散方程介绍

此方式的三维方程同二维,只是多了一个方向而已,此处就把二维放上方便表示。
对流扩散方程哦

二、代码详解

1.参数设置

% 参数设置
Lx = 1000;         % x方向长度
Ly = 1000;         % y方向长度
T = 100;           % 总时间
Nx = 100;          % x方向网格数
Ny = 100;          % y方向网格数
Nt = 200;          % 时间步数
Dx = Lx / Nx;      % x方向步长
Dy = Ly / Ny;      % y方向步长
Dt = T / Nt;       % 时间步长
vx = 0.1;            % x方向水流速度
vy = 1;            % y方向水流速度
vz = 0;            % z方向水流速度(假设与x,y相同)
Dx_coef = 1;     % x方向扩散系数
Dy_coef = 1;     % y方向扩散系数
Dz_coef = 5;     % z方向扩散系数
S = 0;             % 源项(假设无源)
Lz = 1000;         % z方向长度
Nz = 40;           % z方向网格数
Dz = Lz / Nz;      % z方向步长

% 初始化浓度矩阵
C = zeros(Nx, Ny, Nz);    % 创建三维浓度矩阵
C(Nx/2, Ny/2, Nz/2) = 1000;  % 设置初始点源源强和位置

2.计算部分

实现y-z方向可视化输出

% 创建视频文件
videoFile = VideoWriter('FTCS3D.avi', 'Uncompressed AVI');
videoFile.FrameRate = 10;  % 设置视频帧率
open(videoFile);
figure('Position', [1, 1, 1536, 864]); %设置总画幅大小

% 时间循环
for t = 1:Nt
    
    % 临时矩阵
    C_new = C;

    % 空间离散化计算污染物浓度
    for i = 2:Nx-1
        for j = 2:Ny-1
            for k = 2:Nz-1  % 在 z 方向上进行计算
                % 计算扩散项(分别为 x、y、z 方向的扩散项)
                diffusion_x = Dx_coef * (C(i+1,j,k) - 2*C(i,j,k) + C(i-1,j,k)) / Dx^2;
                diffusion_y =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值