自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 POF | 西北工业大学宋家豪、张伟伟等:一种基于伴随方法的物理信息神经网络预处理框架

类似的现象可以在[1, 2]中观察到,根据现有研究,由于PDE损失的病态,PINNs损失的下降并不意味着解精度的提升,它可能陷入错误的局部最优。该工作设计了一种针对损失函数的预处理框架,通过降低PDE系统的条件数实现了对PINNs病态的缓解,在目前PINNs相对棘手的问题中取得了好的表现。在之前的研究[1]中,我们验证了PINNs的病态与Jacobian矩阵的联系,具体地,PINNs的收敛随着J条件数的增加而变得困难甚至得到错误的结果。该损失的数值与其关于网络参数的梯度与原始损失完全相同,并且它更加普适。

2025-12-12 12:03:55 802

转载 重磅︱数字孪生风洞「风神NF3」发布!

风神NF3」数字孪生风洞是神工坊®“数字孪生试验”战略的关键一步,在研发进程中具有里程碑意义。“数字孪生试验”以“超算+AI”为基础支撑,以。

2025-12-12 11:41:57 14

原创 AIAA J | 香港理工大学王旭等:目标导向的特征提取-以特征构建增强数据驱动模型

我们的目标是提出一种通用的特征学习方法,能够显著降低特征空间的维度并增强各种代理模型的泛化能力。高维问题的建模,输入特征要么依赖于知识驱动的特征组合与构造方法(例如几何表征的CST参数化,湍流建模特征设计等),要么基于数据驱动的降维方法(如POD等)进行降维,缺乏与输出耦合的设计方法。模型对比了克里金、随机森林、深度神网络方法,预测结果表明:特征提取可以有效降低系统的维度,训练算例和测试算例间的特征分布吻合,对不同建模方法,所构建的特征均可以提高建模精度,并且以目标导向提取的特征建模的精度不再受限于模型。

2025-12-11 21:58:45 728

原创 IEEE TAP|上海交通大学曹慧琳、南京大学任宇翔等:AI赋能电磁仿真:物理–数据混合驱动的PdEgatSCL模型实现高效建模

为了实现对电大尺寸目标的快速且精确的建模,本文提出了一种物理-数据混合驱动的表面电流学习方法(PdEgatSCL),该方法能够学习组合场积分算子(CFIE),并实现从入射场到表面电流的端到端预测。该方法采用带边特征的图注意力网络(EGAT)作为其基础架构,其中格林函数及其散度被显式编码为网络的边特征。EGAT的注意力机制被用于建模目标的散射特性。此外,离散化表面单元的中心坐标和面积作为节点特征输入,以确保网格信息得到充分利用。最后,将PdEgatSCL应用于求解三维理想电导体(PEC)目标的表面电流。

2025-12-11 21:44:09 661

原创 论文推荐 | 科学发现的基础模型:从范式增强到范式转变

基础模型(Foundation models, FMs),如GPT-4和AlphaFold,正在重塑科学研究的格局。它们不仅加速了假设生成、实验设计和结果解读等任务,更引发了一个更根本的问题:基础模型只是在增强现有科学方法论,还是在重新定义科学实践的方式?本文认为,基础模型正在催化向新科学范式的转变。我们提出三阶段框架阐释此演进过程:(1)元科学整合——FMs在传统范式内优化工作流程;(2)人机混合共创——FMs成为问题建模、推理与发现的主动协作者;

2025-12-10 20:08:32 745

原创 JCP | 西工大向锦鹏、宋述芳等:一种基于伴随代理模型的鲁棒一次性优化方法

针对偏微分方程约束优化问题,一次性优化方法通过构建状态方程、伴随方程和设计方程的完全耦合系统进行同时求解,仅需O(1)量级的正问题求解成本即可完成优化设计,从而显著降低了计算成本。然而,完全耦合系统往往条件数较高,容易导致收敛缓慢甚至数值发散。本文提出了一种基于伴随代理模型的鲁棒一次性优化方法,其中代理模型用于替代伴随方程的求解,并嵌入到一次性优化框架中,以改善系统的病态性。在参数识别、反设计以及气动外形优化等三类基准算例上,该方法相较于经典的直接伴随循环方法实现了超过一个数量级的加速效果。

2025-12-10 20:01:42 537

原创 ENG APPL COMP FLUID | 西北工业大学赵书乐、张伟伟:欧拉方程嵌入的壁面压力和摩阻分布机器学习方法

传统的气动力建模手段对于样本的依赖性强,泛化能力弱。本文将欧拉方程的无粘特征融入到建模过程,并配合架构设计、损失函数设计等方式,使得模型可以在跨音速、分离流等复杂状态下保持了良好的泛化能力,集中力误差可以控制在3%左右。并且通过消融试验对比,展示了模型小样本建模能力,相比于传统方法样本降低2倍以上。

2025-12-09 10:11:43 1076

原创 ENG APPL COMP FLUID | 西北工业大学曹文博、张伟伟等:基于参数化神经网络求解器的层流翼型绕流代理模型

物理信息神经网络(PINNs)已成为求解PDE相关正问题、反问题及参数化问题的重要方法。但其性能常受优化病态性的限制,时间步进导向的神经网络(TSONN)通过将原病态优化问题转化为一系列良性子优化问题,从而在复杂场景下显著提升了鲁棒性与效率。本文提出了一种基于TSONN的层流翼型绕流求解器,并在多组算例中完成了系统验证。结果表明,该求解器的升力系数平均相对误差约为 4.1%,阻力系数误差约为 2.2%。进一步地,本文将该求解器扩展至涉及流动条件与翼型形状的参数化问题,覆盖几乎所有工程场景中的层流绕流。

2025-12-09 10:03:34 708

原创 POF | 西北工业大学马榕池、高传强等:基于预解分析的圆柱绕流最优射流控制位置对雷诺数依赖性研究

流动控制位置显著影响控制效果是研究者的共识,但是如何进行正向设计和定量评估缺乏有效方法,导致控制位置主要依赖经验选定。如圆柱绕流控制,大量研究将控制位置设定在分离点附近,但对于最优位置的精准定位以及其背后的流动机理缺乏深入挖掘。本研究提出了预解分析有效增益指导控制位置量化设计方法,发现了不同雷诺数下最优控制位置的关系式,并挖掘出其背后的流动机理,即射流与主流的掺混作用在科恩达效应有效行程之内到达分离点才能实现涡脱的最佳抑制效果。

2025-12-08 15:00:02 1127

转载 鄂维南院士:回国五年,我的探索与思考

以下内容转载自微信公众号“知识分子”,仅做分享。如有侵权,请联系删除。原文链接:鄂维南院士:回国五年,我的探索与思考到今年九月,我全职回国已经整整五年。这五年间,我同时推动了AI for Science、 data-centric AI基础设施建设,自主可控的工业软件和工业智能的开发,以志愿者身份参与创建交大人工智能学院,并尝试构建一个高效率、高水平的科技创新机制。做这些事不是为了个人的科研,而是希望推动我国在最核心的技术方面实现自主可控,在未来最重要的发展方向上能够抓住千载难逢的机会, 在智能化时代率先找

2025-12-08 09:59:28 45

转载 李飞飞万字长文爆了!定义AI下一个十年

在估算距离、方向和尺寸,或通过从新角度生成图像来进行物体的「心理旋转」等任务上,最先进的MLLM模型的表现鲜有超过随机猜测的。无论是加速我们对实验室中疾病的理解,彻底改变我们讲述故事的方式,还是在我们因疾病、受伤或年老而最脆弱的时刻给予支持,我们都正处在一项新技术的风口浪尖,这项技术将提升我们最珍视的生活的方方面面。随着不同形式的媒体与娱乐之间的界限日益模糊,我们正在接近一种全新的互动体验,它融合了艺术、模拟与游戏——个性化的世界,其中任何人,而不仅是工作室,都可以创造并沉浸在自己的故事中。

2025-12-07 10:47:40 81

原创 POF | 力学所许昭越等:语言引导、零样本多智能体系统,自主实现计算流体动力学模拟

我们提出了 CFDAgent,这是一种零样本、语言引导的多智能体框架,能够从自然语言提示出发,完全自主地完成计算流体力学(CFD)模拟。CFDAgent 集成了三个由大型语言模型驱动的专用智能体:(i) 预处理智能体(Preprocessing Agent),根据自然语言描述、二维图像或三维几何等输入生成拉格朗日(Lagrangian)表面网格;(ii) 求解器智能体(Solver Agent),用于配置并运行浸没边界(immersed boundary)流动求解器;

2025-12-07 10:37:58 725

原创 ND | 西安交大王滔鋆、陈刚等:基于混沌多项式与深度神经网络的快速最优鲁棒轨迹生成

再入轨迹优化在再入飞行器的研发过程中起到了至关重要的作用。然而,再入过程具有很强的非线性特征,具体表现为参数的不确定性以及严格的约束条件。因此,再入轨迹优化问题可以被表述为一个针对复杂非线性动态系统的最优控制问题。传统的轨迹优化方法往往受到收敛速度慢、鲁棒性有限和实时性能不佳的严重限制,阻碍了控制指令的精确高效生成。

2025-12-06 10:49:11 756

原创 AAAI|东方理工陈云天等:教会视频扩散模型“理解科学现象”,从初始帧生成整个物理演化

他们在论文《Latent Knowledge-Guided Video Diffusion for Scientific Phenomena Generation from a Single Initial Frame》中,提出了一种让视频扩散模型学习“潜在科学知识”的全新框架,使模型在给定一帧初始图像的情况下,可以生成更为贴近物理规律的科学现象演化过程——例如流体运动、台风路径、湍流结构等。需要明确的是,由于缺少未来边界条件等约束信息,其生成的并非未来真实发展的唯一结果,而是物理上可行的近似解。

2025-12-06 10:40:55 746

转载 北航董雷霆等:数字工程与数字孪生在航空疲劳与结构完整性领域的研究进展与展望 | 航空学报CJA

数字工程与数字孪生技术为航空疲劳与结构完整性管理提供了全新的解决方案。近年来,与其工程应用实践相关的重要技术——包括建模仿真、试验测试、载荷识别、检测与监测以及模型/数据融合——均取得了较为显著的进展。为进一步推动其在航空疲劳与结构完整性领域的工程应用推广,提出以下建议和展望:1)全面推动核心技术研究,构建完整的数字工程技术框架。2)加强产学研用合作,建立贯穿结构全生命周期并连接各个利益相关方的共享数据库。3)制定行业技术标准,促进通用应用平台及数据共享方式的开发。

2025-12-05 10:57:33 97

原创 重磅发布 |多智能体协同驱动,新一代流体力学工业软件平台正式亮相!

第四届智能流体力学产业联合体大会在深圳召开,西北工业大学等机构联合发布"多智能体协同驱动的新一代流体力学工业软件平台"。该平台采用"即插即用"开放架构,实现智能体微服务化封装;通过物理嵌入的工作流动态演化技术,支持智能决策与自主演化;并构建多源知识融合的"知识超脑"。平台可应用于飞行器气动布局设计、气动-结构耦合设计等典型场景,开创多学科协同设计新范式。

2025-12-05 10:50:12 1081

原创 CMAME | 香港理工大学周原野、周恺等:面向清晰几何边界工程优化的拉格朗日拓扑物理信息神经网络

近年来,物理信息神经网络(PINN)凭借物理-数据融合的优势,被迅速引入拓扑优化领域,然而PINN以隐式场表示拓扑,导致优化结果边界弥散、灰度区宽,难以满足制造工艺对清晰几何轮廓的要求。为此,本文提出“拉格朗日拓扑物理信息神经网络”框架:将显式可变形基础几何体嵌入可微分物理求解器,实现几何边界的精确追踪。该框架兼具拉格朗日描述的边界锐度与PINN的物理一致性,无需灰度阈值后处理即可生成参数化曲线方程边界,显著提高了PINN拓扑优化结果的可制造性与精度。

2025-12-04 15:23:46 629

原创 布朗大学George Karniadakis团队 | 多智能体开始“自动做科研”?AgenticSciML 带来全新科学计算范式

这个相对“简单”但具有挑战性的分段振荡函数拟合任务中,AgenticSciML 通过多智能体协作完成了从问题分析、方法检索、方案辩论、代码实现到训练评估的完整闭环,并在此过程中自动组合出 Mixture-of-Experts + Fourier features + 可训练门控 + 加权/熵正则 的完整解决方案,把验证集 MSE 降低194倍,展示了该框架在发现问题结构与生成针对性模型上的强大能力与效果。由此,它建立了一个完整的“问题契约”,为后续所有模型提供统一的评测标准。整体流程如图1所示。

2025-12-04 15:15:50 736

转载 人大高瓴孙浩团队,Nature子刊+1!

然而,符号回归的核心挑战在于其巨大的搜索空间,潜在表达式的数量会随着复杂度的增加而组合爆炸,这是一个NP难问题。现有的算法,如遗传编程、深度学习等,在处理复杂问题时面临着准确性和效率的瓶颈,它们通常独立评估每一个候选表达式,导致了大量的重复计算,不仅效率低下,而且难以发现复杂、高维问题背后的真实规律,成为制约该领域发展十余年的难题。(图4)在这两项基于真实实验数据的任务中,PSE均表现出色:它不仅能达到甚至超越其他方法的拟合精度,还能生成更为简洁的符号表达式,在预测精度和模型简洁性之间取得了最佳平衡。

2025-12-03 10:42:34 15

原创 Nat Commun | 中科院力学所张陈安&清华大学闫循石:基于知识蒸馏的物理信息神经网络结构自动发现

在过去几十年中,有限元和无网格方法等数值计算技术推动了物理建模的发展,但当面临高维参数空间、极端计算成本、反问题的高试错成本以及边界或初始条件缺失等实际约束时,传统的PDE求解范式在理论和应用上都日益受限。,重构的Ψ-NN结构化网络在训练过程中展现出明显快于PINN和PINN-post的迭代速度,实现了最低为1e-5的损失函数精度,低于其他两个模型。第二行图中,将几个训练步的结果绘制在二维坐标平面上,说明了PINN在迭代过程中的对称性破缺,以及PINN-post和Ψ-NN中的对称性保持。

2025-12-03 10:02:57 760

转载 张东晓团队|AI竟能像科学家一样发现新方程

最后,研究团队构建了“生成-评估-优化”的闭环:通过模型生成一系列新的方程,结合观测数据评估方程质量,使用最优的若干方程微调生成模型,使其更倾向于生成既合物理语法、又能解释数据的显式方程,从而快速收敛。不再是仅仅从数据中“挖”出隐藏的规律,而是融合已知的知识,像一位真正的科学家一样,去生成并优化我们从未想到过的新理论、新方程。此外,该算法能够扩展到高维数据,能够从三维的油-水两相驱替过程的模拟数据中发现其背后的饱和度-压力耦合的控制方程,这证明了该算法在多变量、多物理场耦合系统中的适用性。

2025-12-02 17:17:20 22

转载 到底是谁在推崇 Nature、Science?——一场跨学科评价体系的结构性误解

N/S 不是敌人,也不是神坛。它只是:一个高水平的科学传播平台一个国际资源流通入口一个鼓励热点问题的期刊体系但它绝不等于:创新原创价值影响力解决重大科学问题的能力真正的科学力量来自:深刻的问题独立的判断严谨的研究逻辑长时间的学术积累面向未来的科学直觉不能让 N/S 变成镣铐。越上游的科学,越需要摆脱期刊的束缚。越下游的科学,越应该建立真正的价值评估体系。只有这样,中国科研的未来才能真正站得稳、走得远。

2025-12-02 16:22:18 51

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除