33. 搜索旋转排序数组
这道题的关键是先找出有序的,然后判断target是否是在这个有序的,不是的话则是在另一段
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function(nums, target) {
let len = nums.length;
let left = 0;
let right = len - 1;
while(left <= right) {
let mid = Math.round((left + right) / 2);
if(nums[mid] === target) return mid;
if(nums[left] <= nums[mid]) {
if(nums[left] <= target && target < nums[mid]) {
right = mid - 1;
}else {
left = mid + 1;
}
}else {
if(nums[mid] < target && target <= nums[right]) {
left = mid + 1;
}else {
right = mid -1;
}
}
}
return -1
};
34. 在排序数组中查找元素的第一个和最后一个位置
这道题的关键在于,我们利用二分查找出target值后,怎么继续利用二分查找找到第一个target和最后一个target。
思路就分成两次寻找。
第一次,找第一个target:在找到target后,right = mid -1;
第二次,找最后一个target:在找到target后,left = mid + 1;
/**
* @param {number[]} nums
* @param {number} target
* @return {number[]}
*/
var searchRange = function(nums, target) {
let leftIndex = findLeftTarget(nums, target);
let rightIndex = findRightTarget(nums, target);
return [leftIndex, rightIndex]
};
function findLeftTarget(nums, target) {
let len = nums.length;
let left = 0;
let right = len - 1;
let res = -1;
while(left <= right) {
let mid = Math.round((left + right) / 2);
if(nums[mid] === target) {
right = mid -1;
res = mid; // 记录最新的target的位置
} else if(nums[left] <= target && target < nums[mid]) {
right = mid -1;
} else if(nums[mid] < target && target <= nums[right]){
left = mid + 1;
} else {
break; // 都不符合,退出循环
}
}
return res;
}
function findRightTarget(nums, target) {
let len = nums.length;
let left = 0;
let right = len - 1;
let res = -1;
while(left <= right) {
let mid = Math.round((left + right) / 2);
if(nums[mid] === target) {
left = mid + 1;
res = mid; // 记录最新的target的位置
} else if(nums[left] <= target && target < nums[mid]) {
right = mid -1;
} else if(nums[mid] < target && target <= nums[right]){
left = mid + 1;
} else {
break; // 都不符合,退出循环
}
}
return res;
}
封装一下代码
/**
* @param {number[]} nums
* @param {number} target
* @return {number[]}
*/
var searchRange = function(nums, target) {
let leftIndex = findTarget(nums, target, 'left');
let rightIndex = findTarget(nums, target, 'right');
return [leftIndex, rightIndex]
};
function findTarget(nums, target, bound) {
let len = nums.length;
let left = 0;
let right = len - 1;
let res = -1;
while(left <= right) {
let mid = Math.round((left + right) / 2);
if(nums[mid] === target) {
if (bound === 'left') { // 找第一个的
right = mid - 1;
} else { // 找最后一个的
left = mid + 1;
}
res = mid; // 记录最新的target的位置
} else if(nums[left] <= target && target < nums[mid]) {
right = mid -1;
} else if(nums[mid] < target && target <= nums[right]){
left = mid + 1;
} else {
break; // 都不符合,退出循环
}
}
return res;
}
本题的关键在于找到target后,返回target索引,否则返回left。
比较简单,不写了。
这道题的关键在于,
初始化left = 1;right = x;
如果mid * mid === x, 则mid为所求。
当退出循环后,没找到mid,只能说明不存在刚刚好mid * mid === x,所以要返回left - 1或者是right。 为什么? 因为 值肯定就处于right 和left直接(退出循环的时候,left = right+1);
而要取整,所以就只能取左边的,及right 或者 left -1;
/**
* @param {number} x
* @return {number}
*/
var mySqrt = function(x) {
if(x === 0) return x
let left = 0
let right = x
let res = 0
while(left <= right) {
let mid = Math.floor((left + right) / 2)
if(mid * mid === x ||(mid * mid < x && (mid + 1) * (mid + 1) > x)) {
res = mid
return res
}else if(mid * mid > x) {
right = mid
}else if(mid * mid < x) {
left = mid + 1
}
}
return res
};
这道题又两种二分查找的思路,
第一种是先利用二分查找在哪一行,然后再在这一行当中利用二分查找。
第二种是将多行数组拼接成一个数组,然后二分查找。
太简单了,不写。
这道题跟之前那道是类似的,只不过多了个重复元素,所以就多了些判断。
因为会出现这种情况。
例如 :
nums=[3,1,2,3,3,3,3]。target=2,首次二分时无法判断区间[0,3] 和区间 [4,6] 哪个是有序的。
对于这种情况,我们只能将当前二分区间的左边界加一,右边界减一,然后在新区间上继续二分查找。
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function(nums, target) {
let len = nums.length;
let left = 0;
let right = len - 1;
while(left <= right) {
let mid = Math.round((left + right) / 2);
if(nums[mid] === target){
return true;
}else if(nums[left] === nums[mid] && nums[mid] === nums[right]) {
left++;
right--;
}else if(nums[left] <= nums[mid]) {
if(nums[left] <= target && target < nums[mid]) {
right = mid - 1;
}else {
left = mid + 1;
}
}else {
if(nums[mid] < target && target <= nums[right]) {
left = mid + 1;
}else {
right = mid -1;
}
}
}
return false
};
在二分查找的每一步中,左边界为 low,右边界为high,区间的中点为 pivot,最小值就在该区间内。我们将中轴元素 。
nums[pivot]与右边界元素 nums[high]进行比较,可能会有以下的三种情况:
第一种情况是 nums[pivot]< nums[high]
如下图所示,这说明 nums[pivot] 是最小值右侧的元素,因此我们可以忽略二分查找区间的右半部分。
第二种情况是 nums[pivot]>nums[high]。如下图所示,这说明
nums[pivot] 是最小值左侧的元素,因此我们可以忽略二分查找区间的左半部分。
由于数组不包含重复元素,并且只要当前的区间长度不为 1。
pivot 就不会与high 重合;而如果当前的区间长度为 1,这说明我们已经可以结束二分查找了。因此不会存在 nums[pivot]=nums[high] 的情况。
当二分查找结束时,我们就得到了最小值所在的位置。