一文讲清anaconda完全卸载与anaconda和pytorch的安装,从开始就讲清版本匹配问题

        用了这么久,发现并没有完全理解anaconda的全部安装流程,每次使用时总是到网上查找,环境搭建时又总是有这样或是那样的错误,决定花时间完整重装一下。

温馨提示下载的时候有科学上网会快很多。

参考了以下文章

①超详细彻底卸载Anaconda详细教程_卸载conda-CSDN博客

②彻底卸载CUDA、cuDNN详细教程-CSDN博客

③手把手教你安装PyTorch 傻瓜式操作 一次成功_哔哩哔哩_bilibili

一、anaconda卸载

可以进入虚拟环境再直接使用①中方法卸载,避免出现我下面的问题 

首先在完全卸载anaconda的过程中,采用了①的流程,在执行语句

conda install tqdm -f

时出现了下面的错误

搜索后知道要进入一个虚拟环境然后再安装
顺带解释一句conda install tqdm -f的功能是强制安装tqdm,避免安装时存在环境冲突

anaconda-clean的功能

  1. 清理配置文件 删除用户目录和系统目录中与 Anaconda 相关的配置文件(如 .condarc.ipython 等),并将这些文件备份到 ~/.anaconda_backup 目录中,避免误删重要数据 149
  2. 辅助卸载 Anaconda 作为卸载前的预处理工具,确保后续通过卸载程序(如 Uninstall-Anaconda3.exe )能更彻底地移除 Anaconda 主程序 713
  3. 释放磁盘空间 清理临时文件、缓存包(如 pkgs 目录下的冗余文件),减少因长期使用积累的无用文件占用的空间

这里简单描述一下流程以防原链接找不到

①开始界面进入anaconda prompt

②执行conda activate your_env(这里的your_env替换成你的一个虚拟环境名)

③执行conda install tqdm -f

④执行conda install anaconda-clean
⑤执行Anaconda-clean --yes

出现下面界面进入最后一步

进入anaconda文件夹,双击打开Uninstall-Anaconda3.exe运行,依此运行后重启电脑就可以完成卸载了。

二、cuda和cudnn卸载

进入控制面板程序,将包含CUDA的NVDIA删掉

然后将将环境变量path中关于cuda的环境变量删除,参考②

找到NVIDIA GPU Computing Toolkit,删除文件夹

三、Anaconda的安装

1、Anaconda安装

在Anaconda的官网安装特别慢,安装时尽量使用镜像源,我这里使用的是清华源,链接如下

Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

选择你自己对应的操作系统,我这里选的是2024Windows版的,界面如下

下载完之后双击agree,next之后到下面界面

这里的安装路径默认为C盘建议调整到你想要安装的地方,下面这步一定要注意,勾选134,第二个不要勾选,如下

解释一下环境变量需要自己设置,默认的话可能会出问题,然后安装完后,将两个框中的√取消掉

2、Anaconda环境配置

从计算机->属性->高级->环境变量->系统变量->path->新建以下三个环境变量,根据你自己安装的位置来做相应的修改

安装成功之后在开始中搜索Anaconda Prompt
在里面输入conda --version,出现下面界面则说明Anaconda安装成功

2、查看显卡版本,更新驱动

右击此电脑->管理->设备管理器->显示器适配  查看显卡版本

进入NVDIA官网选择与你显卡适配的驱动,注意是笔记本还是非笔记本以及Windows系统的匹配

NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA

下载完成后打开,直接点OK
到下面的界面选择如下

然后自定义,选上执行清洁安装

驱动更新完成后win+r输入cmd执行

nvidia-smi

查看CUDA Version,一会安装的cuda版本要小于等于它的版本,然后这里如果你是特定项目的安装,注意和pytorch以及python的版本匹配问题

3、cuda安装

CUDA Toolkit Archive | NVIDIA Developer

我这里安装的是11.8的版本

下载好之后直接双击打开,不用修改路径

自定义选择如下图

然后一直下一步就可以

4、配置cuda环境变量

温馨提示可能不同项目需要的pytorch版本不一样,所以相对应的cuda的版本也要和pytorch匹配,这里的cuda是可以安装多个不同版本的

是否安装成功可以在cmd中输入nvcc -V测试

四、Pytorch安装

进入官网,根据上面的版本对应关系选择对应的版本,比如我的cuda为11.8的版本

Start Locally | PyTorch

这里要注意在复制这条指令执行的时候,不要直接在base环境中安装,先创建anaconda虚拟环境
打开Anaconda Prompt执行下面指令

conda create -n your_env_name python=3.9   

这里的your_env_name改为你的环境名,python版本也可以根据需要进行修改

虚拟环境创建好之后,进入虚拟环境(这里的your_env_name就是你的虚拟环境名)
conda activate your_env_name

复制run this command中的内容到里面运行,或者选择install previous versions选择具体的pytorch版本(直接下载很慢可以科学上网)

这里还有另一个方案,单独下载pytorch的安装包,然后用

pip install 文件路径+文件名   或 conda install 文件路径+文件名

pytorch下载链接download.pytorch.org/whl/torch/

然后用官网上的指令下载torchvision和torchaudio注意版本对应

到这里就全部安装完成啦,最后一步验证torch是否安装成功,输出True则已经成功。感谢观看,留个关注。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值