自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 Pytorch 转换为tensor类型数据格式

pytorch中numpy数据类型转换为tensor数据类型

2023-06-26 11:19:04 2202 2

原创 Sklearn Kfold, RepeatedKFold,ShuffleSplit

机器学习sklearn库,交叉验证

2022-07-10 15:04:57 789 1

原创 Vue关闭Eslint方法

Vue前端

2022-07-07 09:53:40 254

原创 吴恩达机器学习python实现8 异常检测及推荐系统

异常检测1、可视化数据def visualize_dataset(X): plt.scatter(X[..., 0], X[..., 1], marker="x", label="point")2、估计参数def estimate_parameters_for_gaussian_distribution(X): mu = np.mean(X, axis=0) sigma2 = np.var(X, axis=0) return mu, sigma23、根

2022-03-25 12:48:44 2259

原创 吴恩达机器学习python实现7 K-means及PCA

K-means1、找到所属簇def find_close_centroids(X, centroids): res = np.zeros((1,)) for x in X: res = np.append(res, np.argmin(np.sqrt(np.sum((centroids-x)**2, axis=1)))) return res[1:]2、计算新的簇中心def compute_centroids(X, idx): K = in

2022-03-24 14:11:37 1719

原创 吴恩达机器学习python实现6 支持向量机

支持向量1、导入所需的库import scipy.io as sioimport matplotlib.pyplot as pltfrom sklearn import svmimport numpy as np2、绘制散点图、绘制决策边界、计算高斯内核# 绘制散点图def plot_scatter(x1, x2, y): plt.scatter(x1, x2, c=y) plt.xlabel("x1") plt.ylabel("x2")# 绘制..

2022-03-22 21:11:25 1521

原创 吴恩达机器学习python实现5 偏差和方差、训练集&验证集&测试集

1、导入数据并可视化 data = sio.loadmat(文件路径) X = data["X"] # (12,1) y = data["y"] # (12,1) Xval = data["Xval"] yval = data["yval"] Xtest = data["Xtest"] ytest = data["ytest"] # 可视化训练集 plt.scatter(X, y, marker="o", c="b")

2022-03-22 14:22:03 2335

原创 吴恩达机器学习python实现4 神经网络

1、对数组进行一维和多维变化# 将多维参数数组映射到一个向量上def serializer(thetas): res = np.array([0]) for t in thetas: res = np.concatenate((res, t.ravel()), axis=0) return res[1:]# 将向量还原为多个参数def deserialize(theta): return theta[:25*401].reshape(25, 4

2022-03-20 15:11:25 1315

原创 吴恩达机器学习python实现3 多元分类及前馈神经网络

多元分类1、从images中随机选取numbers张图片def randomly_select(images, numbers): m, n = images.shape[0], images.shape[1] res = np.zeros((1, n)) for i in range(numbers): index = random.randint(0, m - 1) res = np.concatenate((res, images[in

2022-03-19 15:56:43 586

原创 吴恩达机器学习python实现2 Logistic回归

Logistic回归0、读取数据def read_dataset(filename, type_tuple, separator=','): with open(filename) as f: lines = f.readlines() data = [] for line in lines: line = line[:-1] line = line.split(sep=separator)

2022-03-15 21:45:24 2421

原创 吴恩达机器学习python实现1 单变量线性回归

0、引入要用到的库import numpy as npimport matplotlib.pyplot as plt1、读取数据,绘制图像with open(r'E:\zl\机器学习\1\ex1_linear_regression_ex1data1.txt') as f: populations = [] profit = [] for line in f.readlines(): populations.append(float(line...

2022-03-11 21:18:51 1810

原创 Vue+Django前后端实例1

Vue+Django前后端分离实践

2022-01-30 11:19:03 1222

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除