Pascal证明尼科梅彻斯定理

这几天写“尼科梅彻斯定理”写疯了,望大家谅解。

定理内容

任何一个整数的立方都可以写成一串相邻奇数之和(因为如果不是一串相邻的奇数,这个奇数组合可能会有多个),这就是著名的尼科梅彻斯定理。

数学方法证明

证明之前,我们先看连续p个奇数的和有什么特点:

  1. 假设p为偶数,这些连续p个奇数中间两项的数为2k-1,2k+1 ,则这组数的平均数定是2k,总和为2k*p , 如果p2=2k,那么和为p3
  2. 假设p为奇数,这些连续p个奇数中间一项的数为2k+1 ,则这组数的平均数定是2k+1,总和为(2k+1)p, 如果p2=2k+1,那么和为p3
    我们再看 ,n^3 等于 n
    n^2 ,即 n个n^2的和。
  3. 假设n为偶数,把n2定为一串连续奇数的中间两项的平均数,写出这中间两项,分别为n2-1 ,和n^2+1 ,如果向这两个奇数的两边分别排(n-2)/2项连续的奇数,则加上中间那两项,这组奇数总共(n-2)/22+2=n项,这组连续奇数的总和为nn2=n3,得证(可参照上面的偶数项连续奇数的特点)
    比如4^3=13+15+17+19
    43可以看成4*42=4*16,把16定成一串奇数的中间两项数的平均数,则中间两项分别是15,17 ,然后只需向这两个数的两旁排上剩余(4-2=2)项连续的奇数13和19即可。
  4. 假设n为奇数,则n2必是奇数,把n2定为一串连续奇数的中间一项奇数,如果向这个奇数的两边分别排(n-1)/2项连续的奇数,则加上中间那两项,这组奇数总共(n-1)/22+1=n项,这组连续奇数的总和为nn2=n3,得证(可参照上面的奇数项连续奇数的特点)
    比如5^3=21+23+25+27+29
    53可以看成5*52=5*25,把25定成一串奇数的中间一项奇数,然后只需向这个数的两旁排上剩余(5-1=4)项连续的奇数21,23,和27,29即可。
    到此尼科梅彻斯定理得证。

Pascal方法证明

var i,n,s:longint;
begin
  readln(n);
  i:=n*(n-1) div 2;
  s:=i+i+1;
  write(n,'(3)=',s);
  for i:=i+1 to i+n-1 do
  begin
    write('+',i+i+1);
    s:=s+(i+i+1);
  end;
  writeln('=',s);
end.
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YoungGeeker

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值