Python常用颜色配置表

colors = ['blue', 'green', 'red', 'purple'] # 添加颜色列表

for i, (industry, values) in enumerate(data.items()):

    bars = ax.bar(offset + i * bar_width, values, bar_width, label=industry, alpha=0.8, edgecolor='black',color=colors[i])

# 为每个柱子指定颜色

1  白色        #FFFFFF  2  红色      #FF0000  3  绿色     #00FF00   
        4  蓝色        #0000FF  5  牡丹红    #FF00FF  6  青色     #00FFFF   
        7  黄色        #FFFF00  8  黑色      #000000  9  海蓝     #70DB93   
        10 巧克力色    #5C3317  11 蓝紫色    #9F5F9F  12 黄铜色   #B5A642   
        13 亮金色      #D9D919  14 棕色      #A67D3D  15 青铜色   #8C7853   
        16 2号青铜色   #A67D3D  17 士官服蓝色#5F9F9F  18 冷铜色   #D98719   
        19 铜色        #B87333  20 珊瑚红    #FF7F00  21 紫蓝色   #42426F   
        22 深棕        #5C4033  23 深绿      #2F4F2F  24 深铜绿色 #4A766E   
        25 深橄榄绿    #4F4F2F  26 深兰花色  #9932CD  27 深紫色   #871F78   
        28 深石板蓝    #6B238E  29 深铅灰色  #2F4F4F  30 深棕褐色 #97694F   
        32 深绿松石色  #7093DB  33 暗木色    #855E42  34 淡灰色   #545454   
        35 土灰玫瑰红色#856363  36 长石色    #D19275  37 火砖色   #8E2323   
        38 森林绿      #238E23  39 金色      #CD7F32  40 鲜黄色   #DBDB70   
        41 灰色        #C0C0C0  42 铜绿色    #527F76  43 青黄色   #93DB70   
        44 猎人绿      #215E21  45 印度红    #4E2F2F  46 土黄色   #9F9F5F   
        47 浅蓝色      #C0D9D9  48 浅灰色    #A8A8A8  49 浅钢蓝色 #8F8FBD   
        59 浅木色      #E9C2A6  60 石灰绿色  #32CD32  61 桔黄色   #E47833   
        62 褐红色      #8E236B  63 中海蓝色  #32CD99  64 中蓝色   #3232CD   
        65 中森林绿    #6B8E23  66 中鲜黄色  #EAEAAE  67 中兰花色 #9370DB   
        68 中海绿色    #426F42  69 中石板蓝色#7F00FF  70 中春绿色 #7FFF00   
        71 中绿松石色  #70DBDB  72 中紫红色  #DB7093  73 中木色   #A68064   
        74 深藏青色    #2F2F4F  75 海军蓝    #23238E  76 霓虹篮   #4D4DFF   
        77 霓虹粉红    #FF6EC7  78 新深藏青色#00009C  79 新棕褐色 #EBC79E   
        80 暗金黄色    #CFB53B  81 橙色      #FF7F00  82 橙红色   #FF2400   
        83 淡紫色      #DB70DB  84 浅绿色    #8FBC8F  85 粉红色   #BC8F8F   
        86 李子色      #EAADEA  87 石英色    #D9D9F3  88 艳蓝色   #5959AB   
        89 鲑鱼色      #6F4242  90 猩红色    #BC1717  91 海绿色   #238E68   
        92 半甜巧克力色#6B4226  93 赭色      #8E6B23  94 银色     #E6E8FA   
        95 天蓝        #3299CC  96 石板蓝    #007FFF  97 艳粉红色 #FF1CAE   
        98 春绿色      #00FF7F  99 钢蓝色    #236B8E  100亮天蓝色 #38B0DE 
        101棕褐色      #DB9370  102紫红色    #D8BFD8  103石板蓝色 #ADEAEA 
        104浓深棕色    #5C4033  105淡浅灰色  #CDCDCD  106紫罗兰色 #4F2F4F 
        107紫罗兰红色  #CC3299  108麦黄色    #D8D8BF  109黄绿色   #99CC32 

常见颜色代码

Matplotlib 是一个强大的 Python 数据可视化库,它提供了丰富的颜色映射(colormap)来帮助用户更直观地展示数据。颜色映射是将数据值映射到颜色的工具,使得数据的变化可以通过颜色的变化来体现。Matplotlib 提供了多种颜色映射,主要分为以下几类: 1. **顺序(Sequential)颜色映射**:适用于数据值具有自然顺序的情况,颜色从浅到深或从一种颜色渐变到另一种颜色。 2. **发散(Diverging)颜色映射**:适用于数据值具有中心点(如零)的情况,颜色从中心点向两边发散。 3. **定性(Qualitative)颜色映射**:适用于分类数据,颜色之间没有明显的顺序关系。 4. **循环(Cyclic)颜色映射**:适用于数据值具有周期性循环的情况,颜色在周期结束时重复。 以下是一些常用颜色映射示例: 1. **顺序颜色映射**: - `viridis` - `plasma` - `inferno` - `magma` - `cividis` 2. **发散颜色映射**: - `coolwarm` - `bwr` - `seismic` 3. **定性颜色映射**: - `tab10` - `tab20` - `Set1` - `Set2` 4. **循环颜色映射**: - `twilight` - `hsv` 使用颜色映射的示例代码: ```python import matplotlib.pyplot as plt import numpy as np # 生成示例数据 data = np.random.rand(10, 10) # 使用顺序颜色映射 plt.imshow(data, cmap='viridis') plt.colorbar() plt.title('Sequential Colormap - Viridis') plt.show() # 使用发散颜色映射 plt.imshow(data, cmap='coolwarm') plt.colorbar() plt.title('Diverging Colormap - Coolwarm') plt.show() # 使用定性颜色映射 plt.imshow(data, cmap='tab10') plt.colorbar() plt.title('Qualitative Colormap - Tab10') plt.show() # 使用循环颜色映射 plt.imshow(data, cmap='twilight') plt.colorbar() plt.title('Cyclic Colormap - Twilight') plt.show() ``` 通过这些示例代码,你可以看到不同颜色映射在数据可视化中的效果。选择合适的颜色映射可以显著提高数据可视化的可读性和美观性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值