6-12 二叉搜索树的操作集(30分)

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数 FindMin返回二叉搜索树BST中最小元结点的指针;
函数FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

解答

BinTree Insert( BinTree BST, ElementType X ){
    if(BST == NULL){
        BinTree t = (BinTree) malloc(sizeof (BinTree));
        t->Data = X;
        t->Left = t->Right = NULL;
        BST = t;
    }
    else
        (X<BST->Data?(BST->Left = Insert(BST->Left,X)):(BST->Right=Insert(BST->Right,X)));
    return BST;
}
BinTree Delete( BinTree BST, ElementType X ){
    if(BST == NULL)
        puts("Not Found");
    else {
        if (X == BST->Data) {
            if (BST->Left != NULL && BST->Right != NULL) {
                BinTree t = FindMax(BST->Left);
                BST->Data = t->Data;
                BST->Left = Delete(BST->Left, t->Data);
            } else {
                BST =(BST->Left ? BST->Left : BST->Right);
            }
        } else {
            X > BST->Data ? (BST->Right = (Delete(BST->Right, X))) : (BST->Left = Delete(BST->Left, X));
        }
    }
    return BST;
}
Position Find( BinTree BST, ElementType X ){
       if(BST == NULL){
           return NULL;
       }
       if(BST->Data == X){
           return BST;
       }
       return X < BST->Data ? Find(BST->Left,X): Find(BST->Right,X);
}
Position FindMin( BinTree BST ){
    if(BST != NULL) {
        return BST->Left ? FindMin(BST->Left) : BST;
    }
}
Position FindMax( BinTree BST ){
    if(BST != NULL){
        return BST->Right? FindMax(BST->Right):BST;
    }
}

完整的代码

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}


void PreorderTraversal( BinTree BT ){
    if(BT == NULL) return;
    printf(" %d",BT->Data);
    PreorderTraversal(BT->Left);
    PreorderTraversal(BT->Right);

}

void InorderTraversal( BinTree BT ){
    if(BT == NULL) return;
    InorderTraversal(BT->Left);
    printf(" %d",BT->Data);
    InorderTraversal(BT->Right);

}



BinTree Insert( BinTree BST, ElementType X ){
    if(BST == NULL){
        BinTree t = (BinTree) malloc(sizeof (BinTree));
        t->Data = X;
        t->Left = t->Right = NULL;
        BST = t;
    }
    else
        (X<BST->Data?(BST->Left = Insert(BST->Left,X)):(BST->Right=Insert(BST->Right,X)));
    return BST;
}
BinTree Delete( BinTree BST, ElementType X ){
    if(BST == NULL)
        puts("Not Found");
    else {
        if (X == BST->Data) {
            if (BST->Left != NULL && BST->Right != NULL) {
                BinTree t = FindMax(BST->Left);
                BST->Data = t->Data;
                BST->Left = Delete(BST->Left, t->Data);
            } else {
                BST =(BST->Left ? BST->Left : BST->Right);
            }
        } else {
            X > BST->Data ? (BST->Right = (Delete(BST->Right, X))) : (BST->Left = Delete(BST->Left, X));
        }
    }
    return BST;
}
Position Find( BinTree BST, ElementType X ){
       if(BST == NULL){
           return NULL;
       }
       if(BST->Data == X){
           return BST;
       }
       return X < BST->Data ? Find(BST->Left,X): Find(BST->Right,X);
}
Position FindMin( BinTree BST ){
    if(BST != NULL) {
        return BST->Left ? FindMin(BST->Left) : BST;
    }
}
Position FindMax( BinTree BST ){
    if(BST != NULL){
        return BST->Right? FindMax(BST->Right):BST;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jie3606

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值