G1:生成对抗网络入门

GAN(生成对抗网络)简介:

生成对抗网络(GAN) 是一种深度学习模型,由两部分组成

  生成器(Generator):生成伪造数据

  判别器(Discriminator):判断数据是否真实。

训练过程:

生成器产生假的数据(如图像),然后传给判别器

判别器将数据分为“真实”或“假的”

生成器的目标是让判别器认为它生成的假数据是真实的,而判别器的目标是正确判断数据的真假

核心思想:

生成器和判别器互相对抗,通过不断的训练,最终生成器能够生成足够“真实”的数据,骗过判别器

1.定义超参数

定义模型的超参数:

 n_epochs:训练轮数

 batch_size:每批次训练数据的数量

 lr:学习率

 b1b2:Adam优化器的β值(控制动量)

 latent_dim:生成器输入的噪声维度

 img_sizechannels:图像大小和通道数

 sample_interval:保存生成图片的间隔

import argparse
import os
import numpy as np
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import variable
import torch.nn as nn
import torch

#创建1文件夹
os.makedirs('./images/',exist_ok=True)
os.makedirs('./save/',exist_ok=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值