多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优。它主要由两部分组成: (I) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容; (2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。
信息集结方法有很多,如:加权算术平均(WAA)算子、加权几何平均(WGA)算子:有序加权平均(OWA)算子
WAA就是普通的平均里每项乘一个权重
当给的数据可能不在一个量纲里(有的是10分制、有的是百分制)就需要进行属性值的归一化处理
属性类型一般有效益型、成本型、固定型、偏离型、区间型、偏离区间型等,其中效益型属性是指属性值越大越好的属性,成本型属性是指属性值越小越好的属性,固定型属性是指属性值越接近某个固定值α,越好的属性,偏离型属性是指属性值越偏离某个固定值β越好的属性。区间型属性是指
属性值越接近某个固定区间[q1,q2}](包括落入该区间)越好的属性,偏离区间型属性是指属性值越偏离某个固定区间q3,q4]越好的属性。为了消除不同物理量纲对决策结果的影响,决策时可按下列公式对数据进行规范化处理。
效益型(越大越好):
或
成本型(越小越好):
或
固定值:
偏离型:
偏离区间型:
数据进行归一化以后,做出比较矩阵。通过层次分析法算出每个属性的权重,再用平均算子计算出最后的决策结果。