5. 最长回文子串
题目链接https://leetcode.cn/problems/longest-palindromic-substring/
题目描述
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。
示例 2:
输入: "cbbd"
输出: "bb"
题目解析
首先,我们需要定义什么是回文字符串。回文字符串就是从左往右读和从右往左读都是一样的字符串。例如,“racecar” 就是回文字符串,“level” 也是一个回文字符串。
值得注意的是,一个回文字符串去除首尾两个元素之后,仍然是回文字符串。
基于这一性质,我们可以用动态规划来解决这个问题。动态规划的核心思想是将问题分解成子问题,逐步求解并存储结果,从而避免重复计算。
动态规划解法
我们首先定义一个二维数组 dp,其中 dp[i][j] 表示 s[i:j+1] 是否为回文字符串。
如果 i == j,那么 dp[i][j] = True,因为单个字符总是回文的。
如果 i > j 或 s[i] != s[j],则 dp[i][j] = False,因为回文字符串的首尾字符必须相同。
如果 i < j 且 s[i] == s[j],那么 dp[i][j] 的值取决于 dp[i+1][j-1] 的值。如果 dp[i+1][j-1] 是回文,则 dp[i][j] 也是回文。
依据此,我们可以写出状态转移方程:
当 s[i] == s[j] 时:
dp[i][j] = dp[i+1][j-1]
在 s[i]!= s[j]时:
dp[i][j] = False
需要特别注意的是,当 s[i] == s[j] 且 j - i == 1 时,即子串长度为 2,此时两个字符相同即表示该子串是回文,因此 dp[i][j] = True。
在填充 dp 数组时,我们需要注意遍历的顺序。由于 dp[i][j] 依赖于 dp[i+1][j-1],因此不能按照行遍历,而应该按列遍历。
当dp[i][j]为True时,我们需要判断其是否为当前最长的回文子串,并记录当前的最长回文子串。
代码实现
C++方法:
class Solution {
public:
string longestPalindrome(string s) {
int n=s.size();
auto dp=vector<vector<bool>> (n,vector<bool>(n));
int left=0,lenMax=1;
for(int i=0;i<n;i++){
dp[i][i]=true;
}
for(int j=1;j<n;j++){
for(int i=0;i<j;i++){
if(s[i]==s[j]){
if(i+1==j||dp[i+1][j-1]){
dp[i][j]=true;
if(j-i+1>lenMax){
lenMax=j-i+1;
left=i;
}
}
}
}
}
return s.substr(left, lenMax);;
}
};
Python方法:
class Solution(object):
def longestPalindrome(self, s):
n=len(s)
left=0
lenMax=1
dp=[[False]*n for _ in range (n)]
for k in range(0,n):
dp[k][k]=True
for j in range (1,n):
for i in range (0,j):
if s[i]==s[j]:
if i+1==j or dp[i+1][j-1]:
dp[i][j]=True
if j-i+1>lenMax:
lenMax=j-i+1
left=i
return s[left:left+lenMax]
Go方法:
func longestPalindrome(s string) string {
n:=len(s)
dp:=make([][]bool,n)
left,lenMax:=0,1
for i:=range dp{
dp[i]=make([]bool,n)
dp[i][i]=true
}
for j:=1;j<n;j++{
for i:=0;i<j;i++{
if(s[i]==s[j]){
if(j==i+1||dp[i+1][j-1]){
dp[i][j]=true
if(j-i+1>lenMax){
lenMax=j-i+1
left=i
}
}
}
}
}
return s[left:left+lenMax]
}