leetcode: 5. 最长回文子串 动态规划

5. 最长回文子串

题目链接https://leetcode.cn/problems/longest-palindromic-substring/

题目描述

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

示例 1:

输入: "babad"        
输出: "bab"        
注意: "aba" 也是一个有效答案。

示例 2:

输入: "cbbd"        
输出: "bb"

题目解析

首先,我们需要定义什么是回文字符串。回文字符串就是从左往右读和从右往左读都是一样的字符串。例如,“racecar” 就是回文字符串,“level” 也是一个回文字符串。

值得注意的是,一个回文字符串去除首尾两个元素之后,仍然是回文字符串。

基于这一性质,我们可以用动态规划来解决这个问题。动态规划的核心思想是将问题分解成子问题,逐步求解并存储结果,从而避免重复计算。

动态规划解法

我们首先定义一个二维数组 dp,其中 dp[i][j] 表示 s[i:j+1] 是否为回文字符串。

如果 i == j,那么 dp[i][j] = True,因为单个字符总是回文的。

如果 i > j 或 s[i] != s[j],则 dp[i][j] = False,因为回文字符串的首尾字符必须相同。

如果 i < j 且 s[i] == s[j],那么 dp[i][j] 的值取决于 dp[i+1][j-1] 的值。如果 dp[i+1][j-1] 是回文,则 dp[i][j] 也是回文。

依据此,我们可以写出状态转移方程:

当 s[i] == s[j] 时:
dp[i][j] = dp[i+1][j-1]

在 s[i]!= s[j]时:
dp[i][j] = False

需要特别注意的是,当 s[i] == s[j] 且 j - i == 1 时,即子串长度为 2,此时两个字符相同即表示该子串是回文,因此 dp[i][j] = True。

在填充 dp 数组时,我们需要注意遍历的顺序。由于 dp[i][j] 依赖于 dp[i+1][j-1],因此不能按照行遍历,而应该按列遍历。

当dp[i][j]为True时,我们需要判断其是否为当前最长的回文子串,并记录当前的最长回文子串。

代码实现

C++方法:

class Solution {
public:
    string longestPalindrome(string s) {
        int n=s.size();
        auto dp=vector<vector<bool>> (n,vector<bool>(n));
        int left=0,lenMax=1;
        for(int i=0;i<n;i++){
            dp[i][i]=true;
        }
        for(int j=1;j<n;j++){
            for(int i=0;i<j;i++){
                if(s[i]==s[j]){
                    if(i+1==j||dp[i+1][j-1]){
                        dp[i][j]=true;
                        if(j-i+1>lenMax){
                            lenMax=j-i+1;
                            left=i;
                        }
                    }
                }
            }
        }
      return s.substr(left, lenMax);;
    }
};

Python方法:

class Solution(object):
    def longestPalindrome(self, s):
        n=len(s)
        left=0
        lenMax=1
        dp=[[False]*n for _ in range (n)]
        for k in range(0,n):
            dp[k][k]=True
        for j in range (1,n):
            for i in range (0,j):
                if s[i]==s[j]:
                    if i+1==j or dp[i+1][j-1]:
                        dp[i][j]=True
                        if j-i+1>lenMax:
                            lenMax=j-i+1
                            left=i
        return s[left:left+lenMax]
        

Go方法:

func longestPalindrome(s string) string {
      n:=len(s)
      dp:=make([][]bool,n)
      left,lenMax:=0,1
      for i:=range dp{
        dp[i]=make([]bool,n)
        dp[i][i]=true
      }
      for j:=1;j<n;j++{
        for i:=0;i<j;i++{
            if(s[i]==s[j]){
                if(j==i+1||dp[i+1][j-1]){
                    dp[i][j]=true
                    if(j-i+1>lenMax){
                        lenMax=j-i+1
                        left=i
                    }
                }
            }
        }
      }
      return s[left:left+lenMax]
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值