书生·浦语大模型全链路开源体系(陈恺|上海人工智能实验室 青年科学家)-听课笔记

本文介绍了书生·浦语大模型系列,包括轻量级InternLM-7B到1230亿参数的高性能模型,强调了它们的训练数据、模型能力、微调技术以及全链路开源体系。文章详细讨论了数据处理、模型训练优化、多模态融合以及部署技术挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 书生·浦语大模型系列

    • 轻量级:InternLM-7B
      • 70亿模型参数
      • 1000亿训练token数据
      • 长语境能力,支持8K语境窗口长度
      • 通用工具调用能力,多种工具调用模板
    • 中量级:InternLM-20B
      • 200亿模型参数,在模型能力与推理代价间取得平衡
      • 采用深而窄的结果,降低推理计算量但提高推理能力
      • 4K训练语境长度,推理时可外推至16K
    • 重量级:1230亿模型参数,强大的性能
      • 极强推理能力、全面的知识覆盖面、超级理解能力与对话能力
      • 准确的API调用能力,可实现各类Agent
  • 从模型到应用流程
    在这里插入图片描述- 浦语大模型全链路开源体系生态

    • 数据:书生·万卷
      • 2TB数据,涵盖多种模态与任务
    • 预训练:InternLM-Train
      • 并行训练,极致优化速度达到3600 Tokens/sec/gpu
      • 微调:XTuner
        • 支持全参数微调
        • 支持LoRA等低成本微调
      • 部署:LMDeploy
        • 全链路部署,性能领先
        • 每秒生成2000+tokens
      • 评测:Open
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值