【洛谷】P1145-约瑟夫

文章介绍了如何解决一个变种的约瑟夫问题,其中要求队伍后半部分人员出列。作者采用了计算报数起点移动距离的方法,通过求模运算确定每次出列的序号,并逐步减少队伍人数,直到剩下k人。代码示例展示了问题的解决方案,同时提出了优化策略,即通过设置m的范围避免无效的递增。
摘要由CSDN通过智能技术生成

【洛谷】P1145-约瑟夫

题目链接

P1145 约瑟夫-洛谷

解析

与最经典的约瑟夫问题略有不同,这题要求刚好使队伍后一半人全部出列。

注:队伍序号从0开始!

这里我采用的是求出出队的人在当前队伍中序号的方法

做法为用号数m对当前总人数sum取模再减一,获得本次报数起点需要向右移动的距离(dis,当距离为-1时向左移动)

dis = m%sum - 1;

上次出列序号out+需要移动的距离dis,对sum取模,可以获得下次出列的序号,只要保证该序号大于等于k即是坏人出列

out = (out + dis + sum) % sum;
//括号内再加一个sum是为了对移动距离为-1时取模

当sum削减到k时说明坏人已全部出列。

代码

#include<iostream>
using namespace std;
int k, m;
int main()
{
	int ans = 0;
	cin >> k;
	for (m = k + 1;ans == 0;m++)
	{
		int out = 0, sum = 2 * k, dis;
		while (sum > k)
		{
			dis = m % sum - 1;
			out = (out + dis + sum) % sum;
			if (out >= k && out < 2 * k)
				sum--;
			else
				break;
			if (sum == k)
				ans = m;
		}
	}
	cout << ans;
	return 0;
}

优化

m可以不用逐级递增,而是使m满足

(2n-1)k<m<=2nk,k=1,2,3…

以省去必定不满足条件的m。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值