题解--01背包

本文详细解析了01背包问题的解决方法,采用动态规划算法,通过遍历物品和背包容量,实现最大价值的选择。提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题解–01背包

POJ 3624

题意:有 N (1 ≤ N ≤ 3,402)个物品, i代表第i个物品,其重量Wi (1 ≤ Wi ≤ 400), 价值Di (1 ≤ Di ≤ 100), 每个物品最多只能被使用一次。 背包的最大承重为M (1 ≤ M ≤ 12,880).请问在背包承重范围内,挑选物品,拿到的最大价值是多少?

输入:第一行: 两个用空格分开的整数,分别代表物品总个数N 和背包最大承重 M
第2行至第 N + 1 行: 两个用空格分开的整数,分别代表物品 i的重量 Wi 和价值 Di

输出:输出一个整数,代表在背包承重范围,挑选物品, 能取得的最大价值

思路:遍历每一种商品,遍历背包大小(从大到小),max选取,答案存在dp[m]里。

#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,w[3410],d[3410],dp[12885];

int main(){
	memset(dp,0,sizeof(dp));//初始化
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>w[i]>>d[i];
	}
	for(int i=1;i<=n;i++){
		for(int j=m;j>=w[i];j--){
			dp[j]=max(dp[j],dp[j-w[i]]+d[i]);
		}
	}
	cout<<dp[m]<<endl;
	
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值