KMP算法
代码(下标从0开始)
n e x t [ j ] next[j] next[j] :串的长度为 j j j 时,相等前缀和后缀的最大长度。
规定 n e x t [ 0 ] = − 1 next[0] = -1 next[0]=−1 。
由含义知:
- n e x t [ 1 ] = 0 next[1] = 0 next[1]=0 ,前缀和后缀不能包括自身。
void get_ne(string t) {
int j = 0, k = -1;
ne[0] = -1;
while (j < t.size()) {
while (k != -1 && t[j] != t[k]) k = ne[k];
ne[++ j] = ++ k;
}
}
int kmp(string s, string t, int pos) {
int i = pos, j = 0, slen = s.size(), tlen = t.size();
while (i < slen && j < tlen) {
if (j == -1 || s[i] == t[j]) i ++ , j ++ ;
else j = ne[j];
if (j == tlen) return i - tlen + 1; // 返回匹配成功时的下标
}
return -1; //匹配失败
}
代码(下标从1开始)
// s 自身求 next[]
void get_next()
{
// 因为 ne[1] = 0,所以i从2开始循环。
for (int i = 2, j = 0; i <= n; i ++ )
{
while (j && s[i] != s[j + 1]) j = ne[j];
if (s[i] == s[j + 1]) j ++ ;
ne[i] = j;
}
}
// s母串 p匹配串
void get_next()
{
for (int i = 1, j = 0; i <= n; i ++ )
{
while (j && s[i] != p[j + 1]) j = ne[j];
if (s[i] == p[j + 1]) j ++ ;
ne[i] = j;
}
}
// 匹配过程
// s 母串 p匹配串
for (int i = 1, j = 0; i <= n; i ++ )
{
while (j && s[i] != p[j + 1]) j = ne[j];
if (s[i] == p[j + 1]) j ++ ;
if (j == m)
{
// 匹配成功
j = ne[j]; // 顺着上一次的接着匹配
}
}