KMP总结

KMP算法

代码(下标从0开始)

n e x t [ j ] next[j] next[j] :串的长度为 j j j 时,相等前缀和后缀的最大长度

规定 n e x t [ 0 ] = − 1 next[0] = -1 next[0]=1

由含义知:

  • n e x t [ 1 ] = 0 next[1] = 0 next[1]=0 ,前缀和后缀不能包括自身。
void get_ne(string t) {
    int j = 0, k = -1;
    ne[0] = -1;
    while (j < t.size()) {
        while (k != -1 && t[j] != t[k]) k = ne[k];
        ne[++ j] = ++ k;
    }
}

int kmp(string s, string t, int pos) {
    int i = pos, j = 0, slen = s.size(), tlen = t.size();
    
    while (i < slen && j < tlen) {
        if (j == -1 || s[i] == t[j]) i ++ , j ++ ;
        else j = ne[j];
        
        if (j == tlen) return i - tlen + 1;  // 返回匹配成功时的下标
    }
    
    return -1;  //匹配失败
}

代码(下标从1开始)

// s 自身求 next[]
void get_next()
{
    // 因为 ne[1] = 0,所以i从2开始循环。
    for (int i = 2, j = 0; i <= n; i ++ )
    {
        while (j && s[i] != s[j + 1]) j = ne[j];
        
        if (s[i] == s[j + 1]) j ++ ;
        
        ne[i] = j;
    }
}

// s母串 p匹配串
void get_next()
{
    for (int i = 1, j = 0; i <= n; i ++ )
    {
        while (j && s[i] != p[j + 1]) j = ne[j];
        
        if (s[i] == p[j + 1]) j ++ ;
        
        ne[i] = j;
    }
}

// 匹配过程
// s 母串 p匹配串
for (int i = 1, j = 0; i <= n; i ++ )
{
    while (j && s[i] != p[j + 1]) j = ne[j];
    
    if (s[i] == p[j + 1]) j ++ ;
    
    if (j == m)
    {
        // 匹配成功
        j = ne[j]; // 顺着上一次的接着匹配
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值