机器学习
文章平均质量分 63
Blossom i
开心就好,Python123题持续更新,C语言+数字的文章选自问答的回复整理
展开
-
机器学习8:在病马数据集上进行算法比较(ROC曲线与AUC)
使用不同的迭代次数(基模型数量)进行 Adaboost 模型训练,并记录每个模型的真阳性率和假阳性率,并绘制每个模型对应的 ROC 曲线,比较模型性能,输出 AUC 值最高的模型的迭代次数和 ROC 曲线。计算不同基模型数量下的AUC值,画出“分类器个数-AUC”关系图讨论:随着弱分类器个数的增加,AUC的值会如何变化?为什么?如果AUC值随着弱分类器的增加而增加,是否表示弱分类器个数越多越好呢?我们能否根据AUC的曲线图找到最优的弱分类器个数?怎么找?原创 2023-11-21 21:42:20 · 728 阅读 · 0 评论 -
机器学习6:逻辑回归
具体地,我们可以先将测试样本添加偏置项,然后将该样本的特征向量带入经过训练得到的模型参数 w 中,计算出 sigmoid 函数的输出值(即该样本属于正类的概率值),最后根据概率值来判断该样本属于哪个类别。对于测试样本 (1,2.2), (2.2, 2.3),我们可以使用经过训练得到的 logistic 回归模型对其进行分类预测,并计算其属于正类的概率值。数来将线性函数的输出转换为概率值,使用对数损失函数(log loss)来衡量模。型的预测结果与实际类别标签之间的差异,请使用逻辑回归模型对新的测试样本。原创 2023-11-14 08:38:38 · 112 阅读 · 0 评论 -
机器学习实验七:决策树-基于信贷数据集,使用sklearn中相关库实现决策树的构造
住房 (1表示拥有住房,0表示没有住房) ;婚姻 (0表示单身1表示已婚,2表示离异) ;年收入一栏中单位为1000元; (拖欠贷款一栏0表示不拖欠,1表示拖欠)讨论sklearn中tree.DecisionTreeClassifier()重要的参数有哪些,怎么调整;使用tree.DecisionTreeClassifier()、 graphviz函数,选择合适的算法,构造并绘制决策树原创 2023-10-27 17:30:00 · 433 阅读 · 0 评论 -
机器学习实验六:决策树-海洋生物例子
【代码】机器学习实验六:决策树-海洋生物例子。原创 2023-10-26 18:15:00 · 295 阅读 · 0 评论 -
机器学习实验四:决策树-隐形眼镜分类(计算信息增益和信息熵以及模型准确率)
Description :隐形眼镜数据是非常著名的数据集 ,它包含很多患者眼部状况的观察条件以及医生推荐的隐形眼镜类型。# 为了更容易显示数据,本书对数据做了简单的更改 ,数据存储在源代码下载路径的文本文件中。# 隐形眼镜类型包括硬材质 、软材质以及不适合佩戴隐形眼镜。数据来源于UCI数据库。Title : 使用决策树预测隐形眼镜类型。原创 2023-11-29 17:45:00 · 1019 阅读 · 0 评论 -
机器学习实验三:决策树-隐形眼镜分类(判断视力程度)
使用小数据集 ,我们就可以利用决策树学到很多知识:眼科医生是如何判断患者需要佩戴的镜片类型;# 一旦 理解了决策树的工作原理,我们甚至也可以帮助人们判断需要佩戴的镜片类型。# 本节我们将通过一个例子讲解决策树如何预测患者需要佩戴的隐形眼镜类型。原创 2023-10-25 08:49:52 · 2109 阅读 · 0 评论 -
机器学习实验一:KNN算法,手写数字数据集(使用汉明距离)(2)
KNN-手写数字数据集: 使用sklearn中的KNN算法工具包( KNeighborsClassifier)替换实现分类器的构建,注意使用的是汉明距离;原创 2023-10-25 08:24:27 · 752 阅读 · 0 评论 -
机器学习实验一:KNN算法,手写数字数据集(使用汉明距离)
使用sklearn中的KNN算法工具包( KNeighborsClassifier)替换实现分类器的构建,注意使用的是汉明距离;原创 2023-10-25 01:02:59 · 566 阅读 · 0 评论 -
机器学习2:决策树--基于信息增益的ID3算法
下表是一个由 16 个样本组成的感冒诊断训练数据集D。每个样本由四个特征组成,即体温、流鼻涕、肌肉疼、头疼。其中体温特征有 3 个可能取值:普通、较高、非常高;流鼻涕,肌肉疼、头疼分别有两个可能取值:是、否; 样本的标注值为是否感冒。原创 2023-10-31 11:06:42 · 1792 阅读 · 2 评论 -
机器学习1:k 近邻算法
现在给定一个测试样本 (6, 4),使用 k 近邻算法进行分类,其中 k=5。请计算该测试样本的类别。1) 请简述 k 近邻算法的算法步骤2) 现在给定一个测试样本 (6, 4),使用 k 近邻算法进行分类,其中 k=5。分别使用欧氏距离、曼哈顿距离和棋盘距离来计算测试样本与训练样本之间的距离,并观察它们对最终分类结果的影响。原创 2023-10-09 20:01:35 · 2174 阅读 · 0 评论