1.SQL优化
1.1插入数据
insert优化
批量插入
insert into tb_test values(1,'TOM'),(2,'caT'),(3,'Jerry');
手动提交事务
start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
commit;
主键顺序插入
主键乱序插入:8 1 9 21 88 2 4 16 89 5 7 3
主键顺序插入:1 2 3 4 5 6 7 8 9 15 21 88 89
大批插入数据
如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。
#客户端连接服务端时,加上参数-- local-infile
mysql -ocal-infile -u root P
#设置全局参数local infile为1, 开启从本地加载文件导入数据的开关
set global local infle = 1;
#执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.og' into table tb_ user' fields terminated by ' lines terminated by "\n' ;
select @@local_infile;
set global local_infile = 1;
主键顺序插入的效率高于乱序插入
1.2主键优化
在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表
页分裂
页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据多大,会行溢出),根据主键排序。
页合并
当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许其他记录声明使用
当页中删除的记录达到MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页,看看是否可以将两个页合并以优化空间使用
MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。
主键设计原则
- 满足业务需求的情况下,尽量的降低主键的长度
- 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键
- 尽量不要使用UUID做主键或者是其他自然主键,如身份证号
- 业务操作时,避免对主键的修改
1.3 order by 优化
①. Using filesort :通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort 排序。
②. Using index :通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。
#没有创建索引时,根据age, phone进行排序
explain select id,age,phone from tb_user order by age , phone;
#创建索引
create index idx_user_age_phone_aa on tb_user(age,phone);
#创建索引后,根据age, phone进行升序排序
explain select id,age,phone from tb_ user order by age , phone;
#创建索引后,根据age, phone进行降序排序
explain select id,age,phone from tb_ user order by age desc , phone desc ;
explain select id,age,phone from tb_user order by age ;
explain select id,age,phone from tb_user order by age,phone ;
同样的效果
create index idx_user_age_phone on tb_user(age,phone);
explain select id,age,phone from tb_user order by age;
explain select id,age,phone from tb_user order by age,phone ;
explain select id,age,phone from tb_user order by age desc ,phone desc ;
#根据age, phone进行降序一个升序, 一个降序
explain select id,age,phone from tb_ _user order by age asc , phone desc ;
#创建索引
create index idx_ user_ age_ phone_ ad on tb_ user(age asc ,phone desC);
#根据age, phone进行降序一个升序,一个降序
explain select id,age,phone from tb_ _user order by age asc , phone desc ;
➢根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
➢尽量使用覆盖索引。
➢多字段排序,一个升序- -个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
➢如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小sort_buffer_ size(默认256k)。
1.4 group by 优化
#删除掉目前的联合索引idx_ _user_ pro_ age_ sta
drop index idx_user_pro_age_sta on tb_user;
#执行分组操作,根据profession字 段分组
explain select profession, count(*) from tb_ _user group by profession ;
#创建索引
Create index idx_user_pro_age_sta on tb_user(profession, age , status);
#执行分组操作,根据profession字段分组
explain select profession, count(*) from tb_user group by profession;
#执行分组操作,根据profession字 段分组
explain select profession, count(*) from tb_user group by profession, age;
explain select profession,count(*) from tb_user group by profession;
create index idx_user_profession_age_status on tb_user(profession,age,status);
根据索引进行排序
在分组前建立适当的索引,可以通过索引来提高效率
在分组操作时,也需要满足最左前缀法则的
1.5 limit优化
一个常见又非常头疼的问题就是limit 2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。
优化思路:-般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。
explain select * from tb_ sku t,(select id from tb_ sku order by id limit 2000000,10) a wheretid = a.id;
1.6count优化
explain select count(*) from tb_user ;
➢MyISAM引擎把一个表的总行数存在了磁盘上,因此执行count(*)的时候会直接返回这个数,效率很高;
➢InnoDB 引擎就麻烦了,它执行count()的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。
优化思路:自己计数。
count的几种用法
count()是一个聚合函数,对于返回的结果集,一行行地判断,如果count函数的参数不是NULL,累计值就加1,否则不加,最后
返回累计值。
➢用法: count (*)、count (主键)、count (字段)、count (1)
➢count (主键)
InnoDB引擎会遍历整张表,把每一-行的 主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)。
➢count (字段)
没有not null约束: InnoDB引擎会遍历整张表把每- -行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null, 计数累加。
有not null约束: InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。
➢count (1)
InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放-一个数字“1" 进去,直接按行进行累加。
➢count ()
InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。
按照效率排序的话,count(字段) < count(主键id<count(1)≈count(),所以尽量使用count()。
1.7 update优化
update student set no = '2000100100' where id = 1 ;
update student set no = 2000100105' where name='韦一笑';
-- InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。
count(字段) < count(主键id<count(1)≈count(),所以尽量使用count()。
1.7 update优化
update student set no = '2000100100' where id = 1 ;
update student set no = 2000100105' where name='韦一笑';
-- InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。