自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(304)
  • 收藏
  • 关注

原创 26.Trie树

【代码】26.Trie树。

2026-01-28 13:32:57 3

原创 三.Qt图形界面开发完全指南:从入门到掌握常用控件

基础控件的使用和属性设置布局管理的灵活运用信号槽机制的理解资源管理和样式美化实战项目的完整开发流程记住:多看官方文档,多动手实践,从简单项目开始,逐步增加复杂度。Qt的学习曲线前期较陡,但一旦掌握核心概念,后续开发会非常高效。祝你学习顺利!如果在学习过程中遇到问题,欢迎随时提问交流。

2026-01-28 09:22:57 571

原创 25.字符串哈希

【代码】25.字符串哈希。

2026-01-27 15:23:56 6

原创 24.带权并查集

【代码】24.带权并查集。

2026-01-25 18:59:15 21

原创 23.扩展域并查集

【代码】23.扩展域并查集。

2026-01-24 23:50:11 410

原创 22.并查集

明显的并查集板子题目。

2026-01-24 23:12:42 148

原创 第二章 信号和槽

场景:点击按钮,让标签文本从“Hello”变成“Qt Signal & Slot”。#include <QVBoxLayout> // 布局管理器,让控件排列整齐// 1. 创建控件QPushButton *btn = new QPushButton("修改文本", this);// 2. 布局管理(让控件垂直排列)// 3. 绑定信号与槽:按钮点击 → 标签修改文本});说明:这里用了Lambda表达式作为槽函数(后面会讲),简化代码。场景:自定义一个信号mySignal()

2026-01-22 15:15:04 750

原创 21.单调队列

【代码】21.单调队列。

2026-01-20 09:00:00 12

原创 第一章 Qt 概述

Qt 是一个跨平台的 C++ 图形用户界面应用程序框架。它为应用程序开发者提供了建立艺术级图形界面所需的所有功能。它是完全面向对象的,很容易扩展。Qt 为开发者提供了一种基于组件的开发模式,开发者可以通过简单的拖拽和组合来实现复杂的应用程序,同时也可以使用 C++ 语言进行高级开发。图形用户界面:指采用图形方式显示的计算机操作用户界面,是计算机与其使用者之间的对话接口,是计算机系统的重要组成部分。如下分别是:Android 手机图形用户界面和 IOS 手机图形用户界面。

2026-01-19 16:15:15 475

原创 19.01BFS

但是对于边权不是1的时候,我们将该元素放入queue里面,不一定是最短的。

2026-01-19 09:00:00 125

原创 20.floodfill算法

【代码】20.floodfill算法。

2026-01-19 09:00:00 15

原创 18.多源BFS

【代码】18.多源BFS。

2026-01-18 12:58:22 131

原创 17.BFS

【代码】17.BFS。

2026-01-18 11:23:36 20

原创 16.记忆化搜索

【代码】16.记忆化搜索。

2026-01-15 23:04:17 130 1

原创 神经网络基础

深度学习神经网络就是大脑仿生,数据从输入到输出经过一层一层的神经元产生预测值的过程就是前向传播(也叫正向传播)。前向传播涉及到人工神经元是如何工作的(也就是神经元的初始化、激活函数),神经网络如何搭建,权重参数计算、数据形如何状变化。千里之行始于足下,我们一起进入深度学习的知识海洋吧。人工神经网络(Artificial Neural Network, 简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的计算模型。它由多个互相连接的人工神经元(也称为节点)构成,可以用于处理和学习复杂的数

2026-01-15 17:11:19 1614

原创 PyTorch框架使用

张量是PyTorch中的核心数据抽象PyTorch中的张量就是元素为同一种数据类型的多维矩阵,与NumPy数组类似。PyTorch中,张量以"类"的形式封装起来,对张量的一些运算、处理的方法(数值计算、矩阵操作、自动求导)被封装在类中。多个二维张量组成三维张量多个三维张量组成四维张量多个四维张量组成五维张量。

2026-01-13 18:51:38 927

原创 深度学习简介

(Deep Learning)是机器学习的分支,是一种以的算法。深度学习中的形容词“深度”是指在网络中使用多层。深度学习核心思想是,擅长处理高维数据,如图像、语音和文本。

2026-01-13 15:33:27 477

原创 能源之星案例

通过程序认识能源数据from IPython.core.pylabtools import figsize # 用来设置图片大小from sklearn.model_selection import train_test_split # 训练集测试集划分# 设置显示所有列plt.rcParams['font.size'] = 24 # 设置默认字体大小def dm01_业务数据():# 1 加载数据# 2 查看数据x# 3 查看数据y y存在缺失值/异常值。

2026-01-13 10:30:36 614

原创 git工具

人肉版本控制缺点操作麻烦, 每次都需要复制 → 粘贴 → 重命名无法通过文件名知道具体做了哪些修改容易丢失, 如果硬盘故障或不小心删除,文件很容易丢失协作困难, 需要手动合并每个人对项目文件的修改,合并时极易出错Git的诞生源于Linus Torvalds(Linux 操作系统的创始人)对当时使用的版本控制系统BitKeeper的不满。BitKeeper是一个商业版本控制工具,它在Linux内核项目中被使用,但由于商业许可的限制,Linux社区决定寻找一个开源的替代方案。

2026-01-12 22:06:20 644

原创 能源之星回归案例

解决回归问题数据集中一个样本就是一个建筑物特征列: 地理位置, 建筑物本身属性, 建筑年份, 物业性质…目标列: Energy Star Score, 1-100分, 分值越大,能源减排越好。

2026-01-12 22:03:23 424

原创 机器学习-聚类算法

一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。目的是将数据集中的对象分成多个簇(Cluster),使得同一簇内的对象相似度较高,而不同簇之间的对象相似度较低。与分类不同,聚类不需要事先给定类别标签,算法根据数据本身的特征自动地将数据分组。在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。参数:n_clusters:开始的聚类中心数量。

2026-01-11 11:34:17 685

原创 机器学习-特征降维

用于训练的数据集特征对模型的性能有着极其重要的作用。如果训练数据中包含一些不重要的特征,可能导致模型的泛化性能不佳。某些特征的取值较为接近,其包含的信息较少我们希望特征独立存在,对预测产生影响,具有相关性的特征可能并不会给模型带来更多的信息,但是并不是说相关性完全无用。降维是指在某些限定条件下,降低特征个数, 我们接下来介绍集中特征降维的方法:低方差过滤法,相关系数法,PCA(主成分分析)降维法。

2026-01-10 15:43:35 497

原创 朴素贝叶斯

朴素贝叶斯分类alpha:拉普拉斯平滑系数。

2026-01-10 15:39:22 1304

原创 15.剪枝和优化

【代码】15.剪枝和优化。

2026-01-09 00:12:28 257

原创 03-Matplotlib

是专门用于开发2D图表(包括3D图表)以渐进、交互式方式实现数据可视化x:要显示的刻度值y:要显示的刻度值# 增加以下两行代码# 构造x轴刻度标签x_ticks_label = ["11点{}分".format(i) for i in x]# 构造y轴刻度# 修改x,y轴坐标的刻度显示。

2026-01-07 22:19:24 658

原创 02-Numpy

Numpy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组。Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多。Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。

2026-01-07 22:15:21 643

原创 01-Pandas

Python在数据处理上独步天下:代码灵活、开发快速;Pandas是Python的一个第三方包,也是商业和工程领域最流行的结构化数据工具集,用于数据清洗、处理以及分析Pandas在数据处理上具有独特的优势:底层是基于Numpy构建的,所以运行速度特别的快有专门的处理缺失数据的API强大而灵活的分组、聚合、转换功能数据量大到Excel严重卡顿,且又都是单机数据的时候,我们使用PandasPandas用于处理单机数据(小数据集(相对于大数据来说))

2026-01-06 21:14:23 538

原创 机器学习-集成学习

1.知道集成学习是什么?2.了解集成学习的分类3.理解bagging集成的思想4.理解boosting集成的思想Adaptive Boosting(自适应提升)基于 Boosting思想实现的一种集成学习算法核心思想是通过逐步提高那些被前一步分类错误的样本的权重来训练一个强分类器。弱分类器的性能比随机猜测强就行,即可构造出一个非常准确的强分类器。训练时,样本具有权重,并且在训练过程中动态调整。被分错的样本的样本会加大权重,算法更加关注难分的样本。(观察下图)(1)不同的训练集—>调整样本权重。

2026-01-06 20:54:48 1001

原创 14.DFS

时间复杂度就比较大了(我们要判断质数不能使用试除法)

2026-01-05 00:54:20 307

原创 机器学习-决策树

学习目标1.理解决策树算法的基本思想2.知道构建决策树的步骤决策树是什么?决策树是一种树形结构,树中每个内部节点表示一个特征上的判断,每个分支代表一个判断结果的输出,每个叶子节点代表一种分类结果决策树的建立过程1.特征选择:选取有较强分类能力的特征。2.决策树生成:根据选择的特征生成决策树。3.决策树也易过拟合,采用剪枝的方法缓解过拟合。Cart模型是一种决策树模型,它即可以用于分类,也可以用于回归。分类和回归树模型采用不同的最优化策略。

2026-01-04 12:57:40 1079

原创 机器学习-KNN算法

1.理解K近邻算法的思想2.知道K值选择对结果影响3.知道K近邻算法分类流程4.知道K近邻算法回归流程1.掌握KNN算法分类API2.掌握KNN算法回归API数据文件 train.csv 和 test.csv 包含从 0 到 9 的手绘数字的灰度图像。每个图像高 28 像素,宽28 像素,共784个像素。每个像素取值范围[0,255],取值越大意味着该像素颜色越深训练数据集(train.csv)共785列。第一列为 “标签”,为该图片对应的手写数字。其余784列为该图像的像素值。

2026-01-04 09:00:00 889

原创 机器学习概述

1.知道特征工程是什么?2.理解特征提取的作用3.理解特征预处理的作用4.了解特征降维、特征选择、特征组合。

2026-01-03 12:57:58 567

原创 机器学习-线性回归

1.理解线性回归是什么?2.知道一元线性回归和多元线性回归的区别3.知道线性回归的应用场景数据介绍给定的这些特征,是专家们得出的影响房价的结果属性。我们此阶段不需要自己去探究特征是否有用,只需要使用这些特征。到后面量化很多特征需要我们自己去寻找。

2026-01-03 09:35:17 1018

原创 机器学习-逻辑回归

1.知道逻辑回归的应用场景2.复习逻辑回归应用到的数学知识solver损失函数优化方法训练速度:liblinear 对小数据集场景训练速度更快,sag 和 saga 对大数据集更快一些。newton-cg、lbfgs、sag、saga 支持 L2 正则化或者没有正则化2liblinear 和 saga 支持 L1 正则化penalty:正则化的种类,l1 或者 l2C:正则化力度默认将类别数量少的当做正例流失用户指的使用过产品因为某些原因不再使用该产品。

2026-01-03 09:29:29 827

原创 05_数据组合

在动手进行数据分析工作之前,需要进行数据清理工作,数据清理的主要目标是每个观测值成一行每个变量成一列每种观测单元构成一张表格数据整理好之后,可能需要多张表格组合到一起才能进行某些问题的分析一张表保存公司名称,另一张表保存股票价格单个数据集也可能会分割成多个,比如时间序列数据,每个日期可能在一个单独的文件中。

2026-01-02 09:24:38 777

原创 04_Pandas数据分析入门

加载数据之后,可以通过计算最大值,最小值,平均值,分位数,方差等方式对数据的分布情况做基本了解。sort_values按照值排序 参数by 传入列名 参数 ascending(升序)通过info 方法了解不同字段的条目数量,数据类型,是否缺失及内存占用情况。房子的平均租房价格 (元/平米)找到租金最低,和租金最高的房子。找到最近新上的10套房源。

2026-01-01 21:56:11 1037

原创 03_Pandas_DataFrame入门

本节课程介绍了如何使用Pandas的DataFrame加载数据,并介绍了如何对数据进行简单的分组聚合。与SQL中的数据表类似,DataFrame中的每一列的数据类型必须相同,不同列的数据类型可以不同。② 如果我们按照大洲来计算,每年每个大洲的平均预期寿命,平均人口,平均GDP情况又如何?可视化在数据分析的每个步骤中都非常重要,在理解或清理数据时,可视化有助于识别数据中的趋势。可以通过DataFrame的columns属性获取DataFrame中的列名。每一年的平均人口和平均GDP是多少?

2025-12-31 09:24:01 706

原创 02_Pandas_数据结构

在Pandas中,Series是一维容器,Series表示DataFrame的每一列可以把DataFrame看作由Series对象组成的字典,其中key是列名,值是SeriesSeries和Python中的列表非常相似,但是它的每个元素的数据类型必须相同创建 Series 的最简单方法是传入一个Python列表,如果传入的数据类型不统一,最终的dtype通常是object上面的结果中,左边显示的0,1是Series的索引创建Series时,可以通过index参数 来指定行索引1.2 创

2025-12-31 09:20:09 560

原创 01_Python数据处理简介

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库是一个运行速度非常快的数学库,主要用于数组计算,包含:一个强大的N维数组对象 ndarray广播功能函数整合 C/C++/Fortran 代码的工具线性代数、傅里叶变换、随机数生成等功能。

2025-12-30 17:22:26 689

原创 01_NumPy讲义

NumPy(Numerical Python)是Python数据分析必不可少的第三方库,NumPy的出现一定程度上解决了Python运算性能不佳的问题,同时提供了更加精确的数据类型,使其具备了构造复杂数据类型的能力。本身是由C语言开发,是个很基础的扩展,NumPy被Python其它科学计算包作为基础包,因此理解np的数据类型对python数据分析十分重要。NumPy重在数值计算,主要用于多维数组(矩阵)处理的库。用来存储和处理大型矩阵,比Python自身的嵌套列表结构要高效的多。

2025-12-30 16:52:19 774

python数据分析基础入门

python数据分析讲解

2025-12-31

此资源用于机器学习入门

此资源用于机器学习入门,包含机器学习常见详细算法讲解等

2025-12-31

一.ProtoBuf的学习大纲

学习内容大纲

2025-12-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除