【408DS算法题】033基础-判断二叉树是否是二叉排序树

题目

给定二叉树的根节点root,判断该二叉树是否是二叉排序树。


分析实现

二叉排序树(BST/二叉搜索树):对于每个节点,其左子树中所有节点的值都小于当前结点的值,其右子树中所有节点的值都大于当前结点的值;左子树和右子树本身也是二叉搜索树。
(通常情况下BST不允许有值相同的结点)

在二叉排序树的定义中含有着递归的思想 - “左子树和右子树本身也是二叉搜索树”,因此可以使用递归函数来尝试实现。

具体实现如下:

// 判断BST工具函数
bool isBSTUtil(BTNode* cur, int min, int max){
    if(cur==NULL)
        return true;
    if(cur->val<=min || cur->val>=max) 
        return false;
    return isBSTUtil(cur->left, min, cur->val) 
        && isBSTUtil(cur->right, cur->val, max);
}

// 判断二叉搜索树
bool isBST(BTNode *root){
    return isBSTUtil(root, INT_MIN, INT_MAX);
}

总结

以上就是利用先序遍历判断二叉排序树的实现,同理也可以利用中序遍历实现判断BST的工具函数(欢迎在评论区讨论交流!)。

特别注意的是,本题有一个常见的错误思路,就是依次判断每个结点:

bool isBST(BTNode *root){
    if(root==nullptr) 
        return true;
    if(root->left && root->left->val>=root->val)
        return false;
    if(root->right && root->right->val<=root->val)
        return false;
    return isBST(root->left) && isBST(root->right);
}

此思路对单个结点的判断并没有错误,但BST要求每个顶点的左子树均大于当前结点,这种写法无法达到这一要求。如:
在这里插入图片描述
根据上面的写法该二叉树会被判定为BST,但结点10不满足10 < {15, 6, 20}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值