题目
给定二叉树的根节点root,判断该二叉树是否是二叉排序树。
分析实现
二叉排序树(BST/二叉搜索树):对于每个节点,其左子树中所有节点的值都小于当前结点的值,其右子树中所有节点的值都大于当前结点的值;左子树和右子树本身也是二叉搜索树。
(通常情况下BST不允许有值相同的结点)
在二叉排序树的定义中含有着递归的思想 - “左子树和右子树本身也是二叉搜索树”,因此可以使用递归函数来尝试实现。
具体实现如下:
// 判断BST工具函数
bool isBSTUtil(BTNode* cur, int min, int max){
if(cur==NULL)
return true;
if(cur->val<=min || cur->val>=max)
return false;
return isBSTUtil(cur->left, min, cur->val)
&& isBSTUtil(cur->right, cur->val, max);
}
// 判断二叉搜索树
bool isBST(BTNode *root){
return isBSTUtil(root, INT_MIN, INT_MAX);
}
总结
以上就是利用先序遍历判断二叉排序树的实现,同理也可以利用中序遍历实现判断BST的工具函数(欢迎在评论区讨论交流!)。
特别注意的是,本题有一个常见的错误思路,就是依次判断每个结点:
bool isBST(BTNode *root){
if(root==nullptr)
return true;
if(root->left && root->left->val>=root->val)
return false;
if(root->right && root->right->val<=root->val)
return false;
return isBST(root->left) && isBST(root->right);
}
此思路对单个结点的判断并没有错误,但BST要求每个顶点的左子树均大于当前结点,这种写法无法达到这一要求。如:
根据上面的写法该二叉树会被判定为BST,但结点10不满足10 < {15, 6, 20}
。