- 博客(25)
- 收藏
- 关注
原创 奥数天才的商业实验
历史表明,最成功的技术公司不仅仅是技术优越的;它们在理解技术如何适应人类系统方面也很优越。谷歌不仅仅因为PageRank而获胜,它还因为理解搜索是一个关于意图和相关性的人类问题而获胜。亚马逊不仅仅因为算法而获胜,它还因为理解物流和客户信任是瓶颈而获胜。
2025-11-23 09:00:00
13
原创 当机器人学会“思考“:一场从数字到物理的AI大迁徙
当AI可以做越来越多的事情时,我们想成为什么样的人?当机器可以越来越像人一样工作时,人类的独特价值在哪里?
2025-11-21 08:00:00
37
原创 GPU经济学:英伟达如何将算力变成货币
当算力成为货币,当基础设施成为国家战略,我们实际上是在将智能本身金融化。每次推理、每个模型、每段代码最终都要通过一家公司的芯片来"清算"。这种集中化是AI时代不可避免的代价,还是我们仍有机会重新设计的选择?
2025-11-20 14:22:04
431
原创 AI的“自我认知“困局:当机器开始问“我是谁“
在智能日益分布于人类与机器之间的世界,我们希望保留什么样的人类独特性,又愿意与机器分享什么样的决策权力?这个问题的答案,将在未来十年逐渐清晰——而画像机制,正是书写这个答案的技术语言。
2025-11-18 19:13:47
445
原创 当AI学会“思考“:智能体架构背后的商业博弈
从社会角度看,智能体的普及将深刻改变工作的性质和人类能力的价值评估标准。那些依赖执行力、记忆力和规划能力的职业将面临前所未有的压力,而那些涉及价值判断、创造性综合和情感连接的工作将变得更加重要。
2025-11-17 15:17:48
724
原创 当AI学会叠衣服,我们才会真正需要它
技术会继续进步,但人类需求的本质——对自主性的渴望、对掌控感的需要、对有意义劳动的追求——不会因为AI而改变。当我们为π0能叠好一件衬衫而欢呼时,别忘了问:我们到底想从AI那里得到什么?是更多的便利,还是更好的生活?这两者并不总是一回事。
2025-11-16 21:00:00
873
原创 当AI不再等待指令:智能体工作流如何重构商业逻辑
蒸汽机不会自动带来工人权利,它既催生了血汗工厂,也催生了劳工运动。互联网不会自动实现信息民主,它既创造了知识共享的可能,也制造了信息茧房和监控资本主义。智能体工作流也是如此——它是一套强大的工具,但工具的意义取决于使用者的价值观。
2025-11-15 09:00:00
343
原创 当“智能体“不再只是个名词:企业正在重新定义AI协作的经济学
AI行业正经历从"会思考的工具"到"协同智能系统"的范式转变,但多数企业仍停留在"机器人"思维。真正的AI智能体具备自主决策、学习和理性能力,其经济模型从"执行效率"转向"决策能力"。更深刻的变革在于"代理工作流"架构,它通过降低AI协作的交易成本,创造了动态组合的"软件经济学"。
2025-11-14 11:37:58
486
原创 AI江湖十年,看风云人物如何“跳槽”
硅谷AI人才争夺战揭示行业变革密码:过去十年,AI领域经历了史诗级人才迁徙,职位需求暴增257%。OpenAI宫斗、Hinton出走谷歌等事件背后,是技术革命(Transformer架构)、资本狂潮和理念碰撞(安全vs发展)三重推力。从游戏设计师转型AI制药的Hassabis,到从学术跨界工业界的LeCun,再到为伦理"叛出师门"的Hinton,顶级人才流动呈现五大模式:跨界融合、创业迭代、学界工业双栖、伦理觉醒和应用落地。这种流动推动创新去中心化、技术民主化,并促使伦理成为行业必选项。
2025-07-27 15:59:09
664
原创 大模型“精修课”:后训练方法与落地实战指南
后训练如同教育孩子——预训练赋予知识,后训练塑造能力。选择何种“教育方式”(SFT/DPO/ORL),决定了你的模型是“背诵课本的考生”还是“解决问题的专家”。
2025-07-15 20:04:25
886
原创 人工智能的“人类梦”还有多远?杨立昆点破数学障碍与新出路
作为一名裹挟在当下滚滚AI大潮之下的从业者,到底是不是未来已来,只是分布得还不均匀?是否真的是数学,将是熨平这分布的关键工具?我不知道,但我拭目以待。
2025-07-13 20:12:35
960
原创 超越LLM:当“复读机”遇见物理世界,AI的下一个五年怎么玩?
未来的AI,不该困在文本的牢笼里,而应扎根于我们生存的这个世界。它需要看、需要听、需要“感受”重力,需要理解“水为什么会洒”,“球为什么会滚”。
2025-07-13 11:16:02
844
原创 切词大法要过时?AI分词器的进击、困境与字节级革命
“你曾是人类与AI的翻译官,却在进化浪潮中碎成字节尘埃。莫愁前路无知己——算力暴涨之日,便是概念永生之时!”
2025-07-12 20:35:54
819
原创 AI新晋学徒#6:万数皆可问的ChatBI
今年陆续接到来自不同行业的企业客户就AI应用这一块的新需求,归结下来本质类似,都是希望就企业已有数据(结构化数据为主),通过自然语言提问,希望AI可以就提问结合数据来用自然语言直接回答(而不是像现在这样通过一些统计图表去展现);我自己做了一些搜索学习,原来这类需求的实现有一个专业名称,叫ChatBI.以下是一些学习笔记记录,一来方便自己需要时复习回看,二来也供有需要者参考;欢迎任何指正与交流。
2025-04-27 11:11:52
1019
原创 实战LLM应用(4)基于本地知识库的RAG优化参数测试
**方向**:推动多模态模型向“原生多模态”发展,整合文本、图像、音频、视频等数据,建立统一的多模态词元序列空间,提升模型对复杂信息的理解与生成能力。当前人工智能的发展聚焦于**多模态融合、智能体扩展、具身交互、语言模型强化、新型架构探索、工程化落地**,以及**长期的类脑与量子技术突破**。同时,探索自博弈强化学习等方法增强模型的逻辑与稳定性。- **多模态词元融合**:整合文本、图像、音频、视频等数据,建立统一的词元序列空间(如OpenAI的GPT-4o模型),提升模型对复杂信息的理解和生成能力。
2025-04-08 21:17:30
976
原创 实战LLM应用(3):一个基本的RAG系统(LangChain+Python)
一个基本的RAG系统主要包含两个模块:索引模块(Indexing)、检索和生成模块(Retrieval and generation)。
2025-03-28 19:57:56
999
原创 实战LLM应用(2):搭建LangChain开发环境
至此,本地langchain架构调用本地部署LLM流程跑通,建议后续每次开发工作在虚拟环境进行。
2025-03-21 11:13:15
1337
原创 AI新晋学徒#3:LLM到底是什么
它在研究和学术界非常受欢迎。大语言模型,译自英文Large Language Model (LLM),是一种特殊的神经网络模型(深度学习模型),它通过学习大量的文本数据来掌握语言的规律和模式,打个不一定贴切的比方,就像让一个呱呱落地的婴儿经过不断地学习最终既掌握了语言的应用、也学会了经语言表达记录下来的知识。技术的跃式发展让身处其中的我们难免激动不已,在那之后,如何让技术真正造福身处其中的你我他们也委实路长且艰,我辈,努力吧。在谈及AI言必称大模型的当下,我们说大模型,更多时候在说的是大语言模型。
2024-12-13 10:33:26
1774
原创 AI新晋学徒#2:一些最基本的概念
近几年人工智能的再次“爆发”很大程度上与互联网上数据的海量涌现不无关系,因数据而爆的人工智能反过来说也更好的服务于数据,那么,数据到底是什么?这张图来自维基百科,不一定是最新最全面的,但是在我看来非常清晰的将AI领域最根本的、也比较容易让人困惑的几个基本概念之间的关系呈现了出来。简单来说,数据无非结构化和非结构化两大类,我们每天接触的无数的文字、图片、视频等等都是非此即彼的数据而已。当模型建立以后,可以怎么“教”机器呢?如此,经过了反复学习的机器,就可以称之为有”智能“了,也即我们现在大家都说的人工智能。
2024-12-12 14:10:38
317
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
1