代码随想录算法训练营第29天|第七章 回溯算法part05|491.递增子序列,46.全排列,47.全排列 II

491.递增子序列

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

  • 输入: [4, 6, 7, 7]
  • 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

  • 给定数组的长度不会超过15。
  • 数组中的整数范围是 [-100,100]。
  • 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。
# 原数组顺序不可变,意味着不可进行先排序
class Solution:
    def findSubsequences(self, nums: List[int]) -> List[List[int]]:
        result = []
        self.backtracking(nums, 0, [], result)
        return result

    def backtracking(self, nums, startIndex, path, result):
        if len(path) > 1:
            result.append(path[:])
        uset = set()
        for i in range(startIndex, len(nums)):
            if (path and nums[i] < path[-1]) or nums[i] in uset:
                continue
            uset.add(nums[i])
            path.append(nums[i])
            self.backtracking(nums, i+1, path, result)
            path.pop()

46.全排列

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

  • 输入: [1,2,3]
  • 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]
class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
        result = []
        self.backtracking(nums, [0] * len(nums), [], result)
        return result

    def backtracking(self, nums, used, path, result):
        if len(path) == len(nums):
            result.append(path[:])
            return

        for i in range(len(nums)):
            if used[i] == 1:
                continue
            path.append(nums[i])
            used[i] = 1
            self.backtracking(nums, used, path, result)
            path.pop()
            used[i] = 0

47.全排列 II

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

  • 输入:nums = [1,1,2]
  • 输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:

  • 输入:nums = [1,2,3]
  • 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10
class Solution:
    def permuteUnique(self, nums: List[int]) -> List[List[int]]:
        result = []
        nums.sort()
        self.backtracking(nums, [0] * len(nums), [], result)
        return result

    def backtracking(self, nums, used, path, result):
        if len(path) == len(nums):
            result.append(path[:])
            return

        for i in range(len(nums)):
            if (i > 0 and used[i-1] == 0 and nums[i] == nums[i-1]) or used[i] == 1:
                continue
            path.append(nums[i])
            used[i] = 1
            self.backtracking(nums, used, path, result)
            path.pop()
            used[i] = 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值