
生态、遥感、双碳
文章平均质量分 68
InVEST模型、PLUS模型、DSSAT模型、BIOMOD2模型、CENTURY模型、CASA模型、BGC模型、MAXENT模型、CLM模式、CLUE模型、PROSAIL模型、DNDC模型、CCDM模型GWR模型、APSIM模型、SRP模型、LEAP模型、GEE、GAMIT、Arcgis pro
科研的力量
为广大研究生以及科研工作者分享最实用的科研干货,欢迎持续关注!
展开
-
基于R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析
在训练过程中,使用Bootstrap抽样生成不同的训练集,并在节点分裂时随机选择特征子集,这使得模型具备了处理高维和非线性数据的能力。因此,遥感随机森林建模与空间预测的应用能够有效提升遥感数据分析的精度和可靠性,是许多研究者关注的热点。随机森林(RF)、极限梯度提升机(XGBoost)和支持向量机(SVM)等机器学习算法,分别建立预测模型,并参数调优。(2)R语言基础语法与数据结构,包括:程序包安装、加载、更新,数据读取与输出,ggplot2常规画图等。(2)整合、分析机器学习在遥感、生态领域的经典论文。原创 2025-05-08 14:30:30 · 268 阅读 · 0 评论 -
森林生态学研究深度解析:R语言入门、生物多样性分析、机器学习建模与群落稳定性评估
在生态学研究中,森林生态系统的结构、功能与稳定性是核心研究内容之一。这些方面不仅关系到森林动态变化和物种多样性,还直接影响森林提供的生态服务功能及其应对环境变化的能力。森林生态系统的结构主要包括物种组成、树种多样性、树木的空间分布与密度等。这些结构特征是决定森林功能的基础,例如能量流动、物质循环、生物多样性的维持等生态过程。功能的完整性和效率决定了森林生态系统为人类和其他生物提供的生态服务质量。与此同时,生态系统的稳定性,即其抵御外部干扰和恢复能力,也是当前生态学家关注的重点。稳定性的高低不仅反映森林应对极原创 2025-05-08 14:28:26 · 1038 阅读 · 0 评论 -
多光谱遥感数据处理、岩矿、土壤、植被等地物的光谱特征和图像特征
针对多光谱数据处理,除了ENVI自带和拓展的功能之外,课程提供一套基于Python开发方法,结合目前主流的机器学习和深度学习方法,介绍多光谱遥感数据的整理、图像分类、多时间序列处理、多传感器协同等方法,基于python实现多光谱数据处理和分析过程。与昂贵、不易获取的高光谱、高空间分辨率卫星数据相比,中等分辨率的多光谱卫星数据可以免费下载获取,例如:landsat数据、哨兵-2号数据、Aster数据、Modis数据等,这些海量的长时间对地观测数据,蕴藏着丰富的信息。多光谱遥感基本概念;多光谱数据读取和显示;原创 2025-04-24 17:17:22 · 741 阅读 · 0 评论 -
蒸散发、土壤蒸发、植被蒸腾在站点尺度的计算
不同的项目可以使用不同的Python版本和依赖库,避免了版本冲突和依赖冲突的问题。在站点尺度上,利用叶面积指数、净辐射等计算出冠层有效能量和土壤有效能量,并根据一定时间的累积降水和土壤表面平衡蒸发速率得到土壤蒸发,进而计算出植被蒸腾与冠层导度。Python是一种简单易学、功能强大的编程语言,具有丰富的标准库和广泛的第三方库支持,适用于大数据处理、人工智能、Web开发等多个领域。Python中常见的数据问题有数据重复、数据异常、文本类型、数据缺失、数据无效等,对应异常值处理、文本转换和空缺值填补等操作。原创 2025-04-24 16:50:44 · 756 阅读 · 0 评论 -
生态环境影响评价技术应用及典型案例分析
主要围绕环评导则、结合不同行业类别、实例等讲解生态环境影响评价的原则、方法、工作程序、指标选择、参数计算、模型模拟、报告编制等,系统的培养各单位环评人员技能。群落水平的主要模型:群落分布模型、关系网络模型、物种特征方法、物种-面积曲线;3、生物量计算方法:基于观测数据的统计分析和模型模拟,选取地学参数、遥感反演参数等自变量分别构建多元逐步回归模型和神经网络模型。生态环境影响评价的原则、流程、等级确定及工作范围。1、流程:评价模型指标选取原则、体系构成、指标权重的计算、评价模型的确定。原创 2025-04-16 17:19:30 · 171 阅读 · 0 评论 -
最新导则下的生态环境影响评价技术方法及图件制作与案例实践
内容包括生态环评的工作程序、生物多样性测定、生物量及净初级生产力测定、生态系统格局及服务功能评估、生物完整性指数测定、景观指数计算、生态环境状况综合指数计算;4、评价因子和生态保护目标确定:物种、生境、生物群落、生态系统、生物多样性、生态敏感区、自然景观等不同受影响对象所对应的评价因子。2)分类方法-决策树分类:定义分类规则、获取阈值(光谱、NDVI等)、构建决策树、执行决策树、分类后处理。5、生态现状调查与评价:陆生生态、水生生态、主要生态问题、一、二级评价主要工作内容。原创 2025-04-16 17:12:13 · 263 阅读 · 0 评论 -
在R语言环境中有效地使用BIOMOD2软件包进行物种分布模拟
它集成了多种统计和机器学习方法,如GLM、GAM、SVM等,允许用户预测和分析物种在不同环境条件下的地理分布。(3)特征变量选择:通过相关性分析、主成分分析(PCA)等方法选择具有代表性的特征变量,提高模型效率。理解物种分布模型(SDMs)的理论基础,包括模型的种类、用途以及在生态研究和环境管理中的应用。在R环境中有效地使用BIOMOD2软件包,包括数据准备、模型构建、模型评估和结果解释。获取、处理和分析环境与物种数据的能力,包括数据清洗、变量选择和模型优化。分析物种分布案例,如何应用学到的技能和知识。原创 2025-04-01 15:34:00 · 353 阅读 · 0 评论 -
MaxEnt物种分布建模全流程;R+ArcGIS+MaxEnt模型物种分布模拟、参数优化方法、结果分析制图与论文写作
🔧参数调整与优化:R语言为MaxEnt模型提供了灵活的参数调整功能,可以方便地进行正则化常数、特征变量组合等参数的优化,从而提高模型的预测精度。🎨丰富的可视化工具:R语言的可视化包(如ggplot2)能够以直观的图表形式展示物种分布的预测结果,帮助研究人员更好地理解和解释模型输出。📊强大的数据预处理功能:R语言提供了丰富的数据处理工具,能够轻松完成数据清洗、筛选、转换等操作,为MaxEnt模型提供高质量的输入数据。(清除数据库中缺少经纬度的数据、重复的数据)融合R语言的MaxEnt模型的优势?原创 2025-04-01 15:29:43 · 382 阅读 · 0 评论 -
RWEQ模型的基本原理及数据需求、RWEQ模型参量提取、归因分析等
ArcGIS版本介绍,安装;ArcGIS软件界面,常用功能介绍;ArcGIS工作空间环境设置。原创 2025-03-26 14:17:12 · 841 阅读 · 0 评论 -
DeepSeek和Python的高光谱遥感从数据到智能决策全流程实现与城市、植被、水体、地质、土壤五维一体应用
【保姆级牵引,手把手教学】本课程《DeepSeek、Python高光谱遥感从数据到智能决策的全流程实现与城市、植被、水体、地质、土壤五维一体应用》为您提供从数据获取到智能决策的完整解决方案。基于Python编程入门到DeepSeek工具,把高光谱领域的全部内容都纳进来,包括辐射校正、几何校正、大气校正、光谱预处理、降维、特征提取、混合像元分解、地物分类与识别、目标检测与变化检测等都纳入课程,覆盖全面,循序渐进。(8)图像的读取、显示、保存、基本属性、颜色空间转换、缩放与裁剪、旋转与翻转、几何变换。原创 2025-03-25 14:08:48 · 686 阅读 · 0 评论 -
智能遥感新质生产力暨DeepSeek、Python、OpenCV驱动的空天地数据识别与计算及15个行业标杆案例
更为重要的是,通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。【保姆级牵引,包教包会】本课程《DeepSeek、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战》将带您系统掌握空天地遥感数据分析的全流程,深度融入机器学习、计算机视觉和智能算法的前沿技术。神经元、芯片、CPU、GPU、欠拟合、过拟合、道、屎能吃、红楼梦、外星人、我们活在虚拟世界、我们居然是用屁股吃饭、癌症、AI与人类。原创 2025-03-21 15:03:50 · 1047 阅读 · 0 评论 -
HSPF模型的原理与组成;前处理、后处理与参数率定;水质与泥沙模块等
HSPF模型与SWAT模型一样都是著名的水文模型软件,在世界各地的水文模拟中得到广泛的应用。由于种种原因,HSPF模型在国内的影响力不如SWAT;但是,HSPF模型也有其自身的优势,比如:1.它有很高集成度的前后处理软件,减轻建模的负担;2.它可以自主调节水文响应单元的大小,模型有更好的灵活性;3.HSPEXP+的运用于模型的自动率定。3.WEPP CAT与HSPF的耦合。专题一 HSPF模型的原理与组成。1.HSPF模型的水文原理。专题二 HSPF的前处理。2.HSPF的水质模型。2.参数的敏感性分析。原创 2025-03-07 14:30:05 · 115 阅读 · 0 评论 -
WOFOST模型与PCSE模型应用
WOFOST(WorldFoodStudies)和PCSE(PythonCropSimulationEnvironment)是两个用于农业生产模拟的模型:WOFOST是一个经过多年开发和验证的模型,被广泛用于全球的农业生产模拟和农业政策分析;作物本身的生长发育是一个非常复杂的过程,因此在利用作物模型模拟作物生长过程中涉及的输入参数较多,主要包括气象、作物、土壤、田间管理参数等,在模型参数敏感性分析的基础上,结合实验区实际情况,对敏感性较高的参数进行定标,参数标定部分可参阅文献和网站等资料。原创 2025-03-07 13:53:48 · 492 阅读 · 0 评论 -
基于ArcGIS Pro、R、INVEST等多技术融合下生态系统服务权衡与协同动态分析实践应用
由于经济的快速发展和城镇化、工业化的持续推进,区域发展与生态环境之间产生了一定的矛盾,《千年生态系统评估报告》指出,全球人口的快速增长和经济的快速发展已导致世界60%的生态系统服务退化。ArcGIS Pro是新一代的桌面地图绘制分析软件,用户可以用来收集、组织、管理、分析、交流和发布地理信息,相对于ArcGIS,其在大规模数据加载以及其它的一些热点GIS问题处理方面更具有优势。生态系统服务分之间的权衡与协同关系是现有研究的重难点,即一种服务的增长削弱(促进)另一种服务的权衡(协同)。K为土壤可蚀性因子;原创 2025-02-28 11:41:50 · 1035 阅读 · 0 评论 -
基于ArcGIS Pro、Python、USLE、INVEST模型等多技术融合的生态系统服务构建生态安全格局
生态安全是指生态系统的健康和完整情况。当前构建指标研究仍处于不断探索与完善的阶段,模型和方法层出不穷,构建方法已从简单的层次分析和适宜性分析转变为复杂的生态过程动态模拟,而“源地识别—阻力面构建—廊道提取”的研究框架是构建生态安全格局的典型范式。ArcGIS Pro作为ESRI面向新时代的GIS产品,它在原有的ArcGIS平台上继承了传统桌面软件(ArcMap)的强大的数据管理、制图、空间分析等能力,还具有其独有的特色功能,例如二三维融合、大数据、矢量切片制作及发布、任务工作流、超强制图,时空立方体等。原创 2025-02-28 11:37:46 · 514 阅读 · 0 评论 -
涡度通量Footprint时空动态分析
10.涡度通量数据风浪区分析:涡度通量Footprint时空动态分析等析等。9.涡度通量温度敏感性分析:利用夜间通量与温度数据计算温度敏感性参数等。8.涡度通量光敏感性分析:利用白天通量与辐射数据计算光响应曲线参数等。4.涡度通量数据缺失插补:结合气象数据进行通量数据缺失插补等。6.涡度通量数据可视化分析:绘制不同通量组分数据的时间变化等。7.涡度通量与气象数据相关性:时间序列相关分析、回归分析等。3.涡度通量数据质量控制:通量数据异常值识别与剔除等。原创 2025-01-02 14:33:33 · 192 阅读 · 0 评论 -
生态碳汇涡度相关监测与通量数据分析实践技术应用
以涡度通量塔的高频观测数据为例,基于MATLAB开展上机操作原创 2024-12-30 14:54:54 · 379 阅读 · 0 评论 -
估算陆地生态系统植被净初级生产力NPP的经典模型
植被净初级生产力(Net Primary Productivity, NPP)是指单位面积上绿色植被在单位时间内由光合作用生产的有机质总量扣除自养呼吸的剩余部分。植被NPP是表征陆地生态系统功能及可持续性的重要参数之一,不仅直接反映生态系统在自然环境条件下的生产能力及质量状况,也是判定生态系统碳源/汇的重要因子。目前,基于多源遥感数据开展大尺度、长时间序列植被NPP估算并应用地理信息系统技术进行综合的空间格局和动态分析已经成为量化NPP的重要手段,对于我国实现2060“碳中和”目标具有重要意义。原创 2024-12-27 09:43:06 · 319 阅读 · 0 评论 -
温室气体排放模拟研究、农田CH4和N2O排放模拟、农田N2O排放的模拟研究、农田碳库模型和土壤呼吸、生命周期评价法的农田温室气体排放估算、
①氧化亚氮(N2O)排放的过程(氮素的硝化作用与反硝化作用)④DSSAT模型的总温室气体和作物生产模拟。④两三库模型的编写和呼吸CO2的模拟。③CH4排放的经验算法和过程算法。农田温室气体排放的经典实验设计。农田温室气体排放的全球数据整合。②N2O的模拟的主流方法和模型。①DSSAT模型的CH4模拟。②DSSAT模型的N2O模拟。③DSSAT模型的CO2模拟。农田温室气体排放的模拟研究。①甲烷(CH4)排放的过程。②CH4排放的模拟研究。④CH4排放程序的编写。③N2O排放的模拟练习。原创 2024-12-26 10:16:10 · 292 阅读 · 0 评论 -
估算陆地生态系统植被净初级生产力NPP的经典模型
植被作为陆地生态系统的重要组成部分对于生态环境功能的维持具有关键作用。植被净初级生产力(Net Primary Productivity, NPP)是指单位面积上绿色植被在单位时间内由光合作用生产的有机质总量扣除自养呼吸的剩余部分。植被NPP是表征陆地生态系统功能及可持续性的重要参数之一,不仅直接反映生态系统在自然环境条件下的生产能力及质量状况,也是判定生态系统碳源/汇的重要因子。目前,基于多源遥感数据开展大尺度、长时间序列植被NPP估算并应用地理信息系统技术进行综合的空间格局和动态分析已经成为量化NPP的原创 2024-12-26 10:10:56 · 289 阅读 · 0 评论 -
基于“遥感+”蓝碳储量估算、红树林信息提取实践技术应用与科研论文写作
本课程将结合ENVI和PIE Hyp讲述高光谱遥感信息处理技术,包括光谱恢复、光谱库建立、光谱特征提取、混合像元分解、图像分类及精度检验等内容;同时本课程以JavaScript版本GEE为主进行讲解长时序多尺度的遥感信息提取技术,包括GEE基本知识,遥感影像数据处理的关键知识进行串讲,最后结合海岸带应用典型案例进行综合讲解。原创 2024-12-24 14:28:25 · 148 阅读 · 0 评论 -
CASA(Carnegie-Ames-Stanford Approach) 模型原理及实践
植被净初级生产力(Net Primary Productivity, NPP)是指单位面积上绿色植被在单位时间内由光合作用生产的有机质总量扣除自养呼吸的剩余部分。植被NPP是表征陆地生态系统功能及可持续性的重要参数之一,不仅直接反映生态系统在自然环境条件下的生产能力及质量状况,也是判定生态系统碳源/汇的重要因子。目前,基于多源遥感数据开展大尺度、长时间序列植被NPP估算并应用地理信息系统技术进行综合的空间格局和动态分析已经成为量化NPP的重要手段,对于我国实现2060“碳中和”目标具有重要意义。原创 2024-12-24 14:17:55 · 167 阅读 · 0 评论 -
【体系教程】生态系统碳循环模型CENTURY建模方法与实例应用;CENTURY软件下载、安装、运行
课程通过详细的讲解,让学员熟练掌握CENTURY的模型应用,通过完整的案例分析,加深学员在实际项目中的理解应用。由于“碳中和”备受关注,案例的选择重点,在内容上围绕碳方面展开。涉及编程语言:VB、R语言,提供代码(有无经验均可)原创 2024-12-18 15:12:33 · 392 阅读 · 0 评论 -
【体系教程】生态系统NPP及碳源、碳汇模拟丨CASA原理、数据制备;土地利用变化、未来气候变化、空间动态模拟
由于全球变暖、大气中温室气体浓度逐年增加等问题的出现,“双碳”行动特别是碳中和已经在世界范围形成广泛影响。碳中和可以从碳排放(碳源)和碳固定(碳汇)这两个侧面来理解。陆地生态系统在全球碳循环过程中有着重要作用,准确地评估陆地生态系统碳汇及碳源变化对于研究碳循环过程、预测气候变化及制定合理政策具有重要意义。CASA(Carnegie-Ames-Stanford Approach)模型是估算陆地生态系统植被净初级生产力(NPP)的经典模型。原创 2024-12-18 15:10:27 · 592 阅读 · 0 评论 -
【体系教程】最新版本InVEST实践及在生态系统服务供需、固碳、城市热岛、论文写作等实际项目中应用
不论您是小白亦或是已经能够成功运行InVEST模型生成结果,您可以自由选择课程内容,如果您是小白老师手把手教您,如果您已经是InVEST模型熟悉者,已经为您准备了结合实际项目内容以及通过模型进行高质量的论文重现,还有很重要的一点结合InVEST模型的论文写作经验、技巧以及针对参会者本身的论文写作进行交流指导。原创 2024-12-18 15:08:01 · 844 阅读 · 0 评论 -
CASA模型(讲解+案例实践)NDVI计算、FLASSH大气校正、未来土地利用预测
由于全球变暖、大气中温室气体浓度逐年增加等问题的出现,“双碳”行动特别是碳中和已经在世界范围形成广泛影响。碳中和可以从碳排放(碳源)和碳固定(碳汇)这两个侧面来理解。陆地生态系统在全球碳循环过程中有着重要作用,准确地评估陆地生态系统碳汇及碳源变化对于研究碳循环过程、预测气候变化及制定合理政策具有重要意义。CASA(Carnegie-Ames-Stanford Approach)模型是估算陆地生态系统植被净初级生产力(NPP)的经典模型。更好地推进CASA模型在生态系统碳源和碳汇中的应用,学习掌握CASA模型原创 2024-12-16 17:20:18 · 974 阅读 · 0 评论 -
生态模型大合集—InVEST模型(下载与安装)
高精度气象模式WRF、CMAQ、WRF-CMAQ、WRFDA、WRF/Chem、WRF-Hydro、WRF-UCM、WRF-SOLAR、CAMx的空气质量模拟、CAMX大气臭氧来源解析、MCM箱模型、CMIP6、FLEXPART拉格朗日粒子、大气颗粒物PMF、NCL 数据分析、CLM陆面过程模式、人工智能气象、大气污染扩散模型Calpuff......等各种气象模式教程。ChatGPT、R语言、Python、MATLAB、Arcgis、结构方程模型、贝叶斯、混合效应模型......等各种软件应用教程。原创 2024-12-16 17:10:34 · 826 阅读 · 0 评论 -
ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战
免费提供11.5G的机器学习数据,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,并重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域。原创 2024-12-04 15:59:52 · 993 阅读 · 0 评论 -
全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用
SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。原创 2024-10-07 16:37:36 · 460 阅读 · 0 评论 -
【GEE-PIE遥感】夜间灯光指数提取、长时间尺度植被覆盖度反演、水域动态监测、农作物种植面积提取、荒漠化程度提取、人口密度动态变化分析
其中,Earth Engine最为强大,能够存取和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星图像和NCEP等气象再分析数据集,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。本课程致力于帮助科研工作者掌握GEE和PIE的实际应用能力,以JavaScript编程语言为基础,结合实例讲解遥感云的基本概念知识、影像大数据分析、经典应用案例等方面的进阶技能。影像制图(区域统计、分类图、直方图、散点图、线型图,饼图等)原创 2024-09-26 09:58:42 · 1616 阅读 · 0 评论 -
【MAXENT模型】生物多样性生境模拟与保护优先区甄选、自然保护区布局优化评估
针对我国目前已有自然保护区普遍存在保护目标不明确、保护成效低下和保护空缺依然存在等问题,科学的鉴定生物多样性热点保护区域与保护空缺显得刻不容缓。最大熵模型(Maxent模型)利用物种的分布与环境数据,采用特定算法评估物种的生态位,并投射到景观中,可以直观的呈现物种出现的概率、生境适宜度或物种丰富度等,是目前应用最广泛、预测效果最好的物种分布模型。采用基于Maxent模型的生物多样性热点模拟与GAP分析,将为我国的自然保护区优化、自然保护地体系构建和保护地社区精准脱贫致富等提供重要的决策依据。原创 2024-09-25 15:50:37 · 1735 阅读 · 0 评论 -
【视频教程】基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。本课程采用线上辅导,上机实操教学方式,使广大学者能够掌握卷积神经网络背后的数学模型和计算机算法,熟练利用TensorFlow为基础的遥感影像地物分类,遥感图像目标检测,以及遥感图像目标分割等应用。原创 2024-09-14 09:27:54 · 609 阅读 · 0 评论 -
【视频教程】基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割实践技术应用
随着无人机自动化能力的逐步升级,它被广泛的应用于多种领域,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等。深度卷积网络采用“端对端”的特征学习,通过多层的特征抽取,它揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征,这也是其在无人机影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。然而卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度大,各类深度学习平台的掌握也并不容易。原创 2024-09-14 09:23:12 · 679 阅读 · 0 评论 -
【视频教程】Python语言在地球科学领域中的实践技术应用
Python是功能强大、免费、开源,实现面向对象的编程语言,Python能够运行在Linux、Windows、Macintosh、AIX操作系统上及不同平台(x86和arm),Python简洁的语法和对动态输入的支持,再加上解释性语言的本质,使得它在大多数平台上的许多领域都是一个理想的脚本语言,特别适用于快速的应用程序开发。Python具有丰富和强大的库,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。除了Python标准库,几乎所有行业领域都有相应的Python软件库,随着NumPy原创 2024-09-10 10:20:29 · 625 阅读 · 0 评论 -
【视频教程】如何利用有限的数据发表更多的SCI论文?——利用ArcGIS探究环境和生态因子对水体、土壤和大气污染物
1、如何利用ArcGIS快速提取有效的空间信息?2、如何获取有效的空间数据并进行可视化分析?3、如何选择空间尺度以探究环境污染物的响应强度?4、如何耦合地理信息和环境/生态数据以建立最有说服力的模型?5、如何提升SCI写作水平?原创 2024-09-10 10:06:35 · 362 阅读 · 0 评论 -
【视频教程】遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型应用
基于Sentinel-1 雷达等影像,以典型洪涝灾害为例监测受灾区域。案例内容包括多源影像数据处理和不同水体识别算法构建,如OSTU全局自动分割与局部自适应阈值法,以及采用不同方式确定受灾区域,受灾面积统计与可视化输出等原创 2024-09-10 10:02:14 · 1536 阅读 · 0 评论 -
【视频教程】GEE遥感云大数据在林业中的应用与典型案例实践
以Earth Engine(GEE)为代表全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台应用越来越广泛。该平台存储和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星影像、气候与天气、地球物理等方面的数据集超过60PB,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。相比于ENVI等传统的遥感影像处理工具,GEE在处理海量遥感数据方面具有不可比拟的优势,一方面提供了丰富的计算资源,另一方面其巨大的云存储节省了科研人员大量的数据下载和预处理的时原创 2024-09-10 09:56:56 · 1198 阅读 · 0 评论 -
【视频教程】GEE-PIE遥感大数据处理与典型案例实践
GEE/PIE等遥感云平台凭借其强大的功能正受到越来越多国内外科技工作者的关注,应用范围也在不断扩大。原创 2024-09-10 09:53:37 · 1015 阅读 · 0 评论 -
【视频教程】MAXENT模型生物多样性生境模拟与保护优先区甄选、保护区布局优化评估及论文写作技巧
最大熵模型(Maxent模型)利用物种的分布与环境数据,采用特定算法评估物种的生态位,并投射到景观中,可以直观的呈现物种出现的概率、生境适宜度或物种丰富度等,是目前应用最广泛、预测效果最好的物种分布模型。原创 2024-09-10 09:49:41 · 289 阅读 · 0 评论 -
InVEST实践及在生态系统服务供需、固碳、城市热岛、论文写作等实际项目中的具体应用
不论您是小白亦或是已经能够成功运行InVEST模型生成结果,您可以自由选择课程内容,如果您是小白老师手把手教您,如果您已经是InVEST模型熟悉者,已经为您准备了结合实际项目内容以及通过模型进行高质量的论文重现,还有很重要的一点结合InVEST模型的论文写作经验、技巧以及针对参会者本身的论文写作进行交流指导。原创 2024-09-10 09:46:10 · 1155 阅读 · 0 评论