1. 理解产品需求与算法场景
- 明确算法使用环境:了解算法将在何种环境下运行,包括硬件和软件条件。
- 掌握使用方式:明确算法的使用方法和用户交互方式。
- 了解场景限制:识别算法可能遇到的各种限制条件,如输入数据的范围、格式等。
2. 编写算法测试方案
- 确定测试维度:根据算法的特点和产品需求,确定测试的各个方面,如功能、性能、边界条件等。
- 编写测试方式:设计具体的测试方法,包括手动测试和自动化测试的策略。
- 设定准出指标:明确算法测试通过的标准,如准确率、召回率、误检率等关键指标。
3. 数据准备与标注
- 编写场景及分布比例:根据算法的应用场景,设计测试数据的分布比例。
- 编写采集步骤:制定数据采集的详细步骤,确保数据的准确性和多样性。
- 标注标签及判定标准:为测试数据标注正确的标签,并明确标签的判定标准。
- 数据检查:数据工程师采集或外包数据后,测试人员需抽样检查数据是否满足要求。
4. 编写测试脚本与统计工具
- 接口脚本:编写用于接收算法结果的接口脚本,如分类结果、分类分数等。
- 辅助统计脚本:编写辅助统计脚本,用于生成测试结果的详细报告,包括总框数、多检数、漏检数、识别正确数等关键指标。
- 测试集分文件夹脚本:编写脚本将有误的测试集分到不同的文件夹下,便于后续分析和优化。
5. 执行测试并分析结果
- 开发人员提测:开发人员提交算法版本供测试。
- 运行测试脚本:执行接口脚本和辅助统计脚本,统计对应场景指标及总指标。
- 分析测试结果:根据测试结果分析算法的性能和存在的问题,若未通过测试,则运行测试集分文件夹脚本分析具体场景。
6. 优化与复测
- 优化算法:根据测试结果对算法进行优化,解决存在的问题。
- 复测:使用相同的测试集对优化后的算法进行测试,验证优化效果。
7. 端到端体验性测试
- 模拟用户场景:由于接口测试与用户实际使用差异较大,需按用户方式体验算法召回率及误识别率。
- 记录测试数据:通过录制测试过程、保存测试现场数据等方式提高测试数据复用率。
8. 链路验证与上线
- 端到端链路验证:确认算法在实际使用时的链路无误。
- 发起上线流程:算法工程师发起上线流程,各方统一算法上线时间。
- 线上问题反馈:对线上出现的问题进行复现、记录并判断是否需要进一步优化。
9. 持续测试与优化
- 持续测试:在算法上线后持续进行监控和测试,确保算法的稳定性和性能。
- 定期优化:根据测试结果和用户反馈定期对算法进行优化和改进。
综上所述,算法测试是一个复杂而系统的过程,需要综合考虑多个方面的因素以确保算法的质量和性能。