解题思路:
1.要求yyy最多能够参加的比赛,首先分析,如果比赛的开始时间和 上一场的比赛结束时间都是不相交的,那么他所有的比赛都可以 参加,如果有相交的话,分为两种情况,一种是包含,一种是重 叠,如下图所示
2. 分析重合的情况,应该参加结束时间更少的比赛,这样的话,能 够为后面比赛的开始时间提供更多空间,重叠的情况同样适用, 所以两者都应该是以结束时间较早的为选择
3. 那么现在只需要建立一个结构体变量,用来存储他的开始时间和 结束时间,然后以结束时间排序即可
4.完成排序后,标记第一场比赛的结束时间,如果下一场的开始时 间时大于结束时间的,便可以参加比赛,sum++,并且更新标 记,此时的结束时间应该为当前数组位置的变量的结束时间
#include<bits/stdc++.h>
using namespace std;
struct game{
int left;
int right;//分别存储每场比赛的开始时间和结束时间
}a[1000005];
bool cmp(game x,game y)
{
return x.right<y.right;
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i].left>>a[i].right;
}
sort(a+1,a+n+1,cmp);
int finsh=a[1].right;//设定标签为第一场比赛结束的时间
int sum=1;//第一场比赛肯定可以参加
for(int i=2;i<=n;i++)
{
if(a[i].left>=finsh)//如果本场比赛的开始时间大于上一场比赛的结束时间
{
sum++;//比赛次数加1
finsh=a[i].right;//更新结束时间
}
}
cout<<sum;
return 0;
}