解题思路:
1.分析题意,蜜蜂只能从编号小的地方到相邻的编号大的地方
2.如果在1号的位置,那么移动到2号的方法数为1,移动的3号的方法数为3,移动到4号的方法数为2号的方案和3号的方案的和,每一步的方案数都和前两个方案数相关,满足最优子结构,状态转移方程为dp[i]=dp[[i-1]+dp[i+1]
3.题中是求从m号到n号的方案数,那么在m号的方案为1,在m+1号的方案为1,从m+2号的方案数为前两个之和,一直求到n
4.观察数据,最大为1000,斐波那契数列的增长是指数级的,意味采用高精度加法来求,所以东一了一个Js函数(用法与数楼梯相同)
#include<bits/stdc++.h>
using namespace std;
long long dp[1010][5010];
int len=1;
void js(int x)
{
for(int i=1;i<=len;i++)//按位相加
{
dp[x][i]=dp[x-1][i]+dp[x-2][i];
}
for(int i=1;i<=len;i++)
{
dp[x][i+1]=dp[x][i+1]+dp[x][i]/10;//进位
dp[x][i]=dp[x][i]%10;//取余
}
if(dp[x][len+1]!=0)//判断遍历长度
len++;
}
int main()
{
int m,n;
cin>>m>>n;
dp[m][1]=1;//初始化
dp[m+1][1]=1;
for(int i=m+2;i<=n;i++)
js(i);//高精度加法
for(int i=len;i>=1;i--)//倒序输出结果
cout<<dp[n][i];
return 0;
}