三维重建
文章平均质量分 91
呔吗
我很懒,还没有简介
展开
-
Interacting Attention Graph for Single Image Two-Hand Reconstruction(单幅图像双手重建的交互注意图)
2203.09364.pdf (arxiv.org)摘要图卷积网络(GCN)在单手重建任务中取得了巨大的成功,而利用GCN进行双向交互重建的研究尚不深入。在本文中,我们提出了交互注意图手(IntagHand),这是第一个基于图卷积的网络,可以从单个RGB图像重构两个交互手。为了解决双手重建的遮挡和交互问题,我们在原GCN的每个上采样步骤中引入了两个新的基于注意的模块。第一个模块是金字塔图像特征注意(PIFA)模块,它利用多分辨率特征隐式地获得顶点到图像的对齐。的第二个模块是交叉手注意(CHA)模块,它通过在原创 2022-10-14 21:03:30 · 1728 阅读 · 0 评论 -
AutoSDF
此外,为了学习一组广泛任务的先验,如形状完成,其中可能观察到任意子集,例如椅子的4条腿,我们建议学习一个“非顺序的”自回归先验,即能够使用随机子集作为条件反射的先验。它们已成功地用于跨领域的建模分布,如图像[8,20,25,33]、音频[21]、视频[18]或语言[45],我们的工作在广泛的3D生成任务中探索了它们的好处。给定对3D形状的任意(可能是稀疏的)子区域的观察,我们可以从我们学习到的分布中采样不同的和高质量的形状,我们表明,这种通用方法的性能相对较好,如果不是比以前的专门方法更好的话。原创 2022-10-02 16:18:54 · 1436 阅读 · 3 评论