干货总结--机器学习(西瓜书)知识点
文章平均质量分 86
还在因为西瓜书太多而苦恼吗?川宝带着你划重点!
键盘上有个川宝
川宝跟你一起敲代码
展开
-
使用CNN预测基因可及性
使用CNN预测基因可及性,Basset使用深度卷积神经网络学习可访问基因组的调控代码转载 2022-09-13 15:36:51 · 468 阅读 · 0 评论 -
机器学习 | 第2章(续)性能度量
在训练模型的过程中,不仅需要可行的实验估计方法,还需要衡量模型泛化能力的评价标准,简单来说,就是评价模型好不好,下面川宝带你看一看几个常用的性能度量标准:1.均方误差回归任务最常用的性能度量是均方误差,即预测值与真实值的差值和再取平均,即2.错误率与精度错误率是分类错误的样本数占样本总数的比例,精度则是分类正确的样本数占样本总数的比例。错误率定义为:精度定义为:3.查准率,查全率,F1查准率是指模型预测的结果中,准确率有多少。查全率是指模型预测的结果中,所有正原创 2022-05-22 11:36:42 · 685 阅读 · 1 评论 -
机器学习 | 第2章 模型评估与选择
在本章节的内容中,川宝将带大家了解怎么评估学得的模型好不好,怎么去选择好的模型,跟着川宝一起来看一看:1.经验误差与过拟合错误率:在分类过程中,不免会出现分类错误的情况,我们把分类错误的样本数占样本总数的比例称为“错误率”。精度:精度与错误率是相反的概念,1-错误率=精度。误差:我们把学习器的实际预测输出与样本的真实输出之间的差异称为“误差”,在训练集上的误差称为训练误差,在新样本上的误差称为泛化误差,显然,我们的目的是想得到泛化误差的模型。过拟合:当我们训练模型训练地太好的时候,我们可原创 2022-05-21 20:15:41 · 255 阅读 · 1 评论 -
机器学习 | 第1章 基础知识总结
在学习机器学习之前,川宝首先来给大家解释一下什么是机器学习?在我们的生活中,往往会有一些经验,比如通过看西瓜的外表,如色泽,根蒂,敲声等就可以判断出这个西瓜好不好,那么我们的机器学习就是在做这样一件事情,我们如何能够让计算机也能够获得这样的经验,如何也能够通过一些特征就能判断出西瓜的好坏,这就是机器学习做的事情。1.学习算法机器学习学得的这种经验,本质上是一种模型,那么学习算法就是学得这种模型的一个过程。2.基本术语数据集:学得模型所需要的数据的集合。样本:数据集中的每一个个体的相关原创 2022-05-21 18:39:20 · 311 阅读 · 1 评论