2022年蓝桥杯省赛真题解析(C++B组)

作者分享了2022年蓝桥杯的经历,强调了官方对防止作弊的措施。重点解析了九进制转十进制、顺子日期问题,以及C/C++代码优化。提到刷题统计部分,包括了两个C++代码片段及其优化过程,涉及进制运算和前缀和计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        2022.04.09,我第一次参加蓝桥杯,我想说今年官方为了防止作弊,可谓煞费苦心,直接启用备用卷,难度直接到国赛难度。第一次参加,却让我输的那么彻底。


        2023.04.05更新了题解,祝各位在4.8能取得一个圆满的成绩!


目录

A九进制转十进制​

B 顺子日期

C 刷题统计

D 修剪灌木

E X进制减法

F 统计子矩阵

G 积木画 

H 扫雷

I 李白打酒加强版

J 砍竹子


A九进制转十进制

答案:1478

B 顺子日期

答案:4 / 14

解析:我填了4,当时我一直在想012算不算,题目说了20220123有一个顺子:123,没说是012,所以我认定它不算,那就只有20220123,20221123,20221230,20221231。注意:降序是不算顺子的。

C 刷题统计

for(50分吧)

#include <bits/stdc++.h>
#define MOD 1000000007
using namespace std;
typedef long long LL;
LL a,b,n;
int main() {
	int sum=0;
	cin>>a>>b>>n;
	for(LL i=1; ;i++) {
		if(i%7!=6 && i%7!=0) sum+=a;
		else sum+=b;
		if(sum>=n) {
			cout<<i;
			return 0;
		}
	}
	return 0;
}

优化(应该100)

#include <bits/stdc++.h>
#define MOD 1000000007
using namespace std;
typedef long long LL;
LL a,b,n;
int main() {
	cin>>a>>b>>n;
	LL sum=a*5+b*2;//一周的做题数
	LL t=n/sum;//需要t周(往下取整)
	LL nn=t*sum;//t周做了nn个题目
	if(nn>=n) cout<<t*7;
	else if(nn+a>=n) cout<<t*7+1;
	else if(nn+a*2>=n) cout<<t*7+2;
	else if(nn+a*3>=n) cout<<t*7+3;
	else if(nn+a*4>=n) cout<<t*7+4;
	else if(nn+a*5>=n) cout<<t*7+5;
	else if(nn+a*5+b>=n) cout<<t*7+6;
	else if(nn+a*5+b*2>=n) cout<<t*7+7;//考试时没写这句,刚刚试数据查到错的....彻底无语,大无语事件
	return 0;
}

D 修剪灌木

 解析:我是直接用草稿纸手推出来,发现的规律,1需要特判:1。2输出2 2,3输出4 2 4,4输出6 4 4 6,5输出8 6 4 6 8……以此类推就好了,我们看到边界是最高的,然后往中间成以公差为-2递减。所以用双指针控制它即可

#include <bits/stdc++.h>
#define MOD 1000000007
using namespace std;
typedef long long LL;
int a[10005];
int n;
int main() {
	cin>>n;
	if(n==1) {
		cout<<1;
		return 0;
	}
	int s=(n-1)*2;
	int l=1,r=n;
	while(l<=r) {
		a[l]=a[r]=s;
		l++,r--;
		s-=2;
	}
	for(int i=1; i<=n; i++)
		cout<<a[i]<<endl;
	return 0;
}

E X进制减法

        我在考场上看到好多人卡这题,主要是读不懂题,出考场时有很多人问我321怎么等于65,题目说了三个位的进制分别是8 10 2(从左到右),所以就是3 * 20 + 2 * 2 + 1 = 65,看不懂的小伙伴可以回去好好复习一下二进制或者往下看。

解析:

        321的“1”是2进制,逢2进1,即“2”就意味着数字4=2*2,“2”的进制是10进制,逢10进1,也就是说对于“2”来说,“3”代表着30,而对于“1”来说“3”则代表着60=30*2。通俗的说,假如321整个树是10进制,那么对于“2”而言“3”是30,对于“1”而言,“3”是300=3*10*10.

        然后,这里的最高位进制是没用的,相当于摆设。由于它说a b同一条进制系统,所以数位的进制应该是一样的,那么我们就需要一个s数组来存放当前数位应该*哪个数了

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5+10, mod=1000000007;
typedef long long LL;
LL a[N], b[N],res;
int n,ma,mb;

int main()
{
    cin>>n;
    cin>>ma;
    for(int i=ma-1; i>=0; i--) cin>>a[i];
    cin>>mb;
    for(int i=mb-1; i>=0; i--) cin>>b[i];
    for(int i=max(ma,mb)-1; i>=0; i--)
    {
        LL h=max(a[i]+1ll, max(b[i]+1ll, 2ll));
        res=(res*h%mod+(LL)(a[i]-b[i]))%mod;
    }
    cout<<res;
    return 0;
}

F 统计子矩阵

二维前缀和,不会。。。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 510;
int s[N][N];
int n,m,k;
LL res;

int main()
{
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1; i<=n; i++)
        for(int j=1; j<=m; j++)
        {
            scanf("%d",&s[i][j]);
            s[i][j]+=s[i-1][j];
        }
    for(int i=1; i<=n; i++)
        for(int j=i; j<=n; j++)
            for(int l=1,r=1,sum=0; r<=m; r++)
            {
                sum+=s[j][r]-s[i-1][r];
                while(sum>k)
                {
                    sum-=s[j][l]-s[i-1][l];
                    l++;
                }
                res=(LL)res+r-l+1;
            }
    cout<<res;
    return 0;
}

G 积木画 

听他们说这道题在洛谷有原题,而且是用dp做,完全和他们不一样,我用斐波那契做的 

解析:

        这题我依旧是手推找规律。

        n为1时是1 = 1 + 0 * 2;

        n为2时是2 = 2 + 0 * 2;

        n为3时是5 = 3 + 1 * 2;

        n为4时是9 = 5 + 2 * 2;

        n为5时是18 = 8 + 5 * 2;

        n为6时是35 = 13 + 12 * 2;

        n为7时是67 = 21 + 23 * 2;以此类推

        我们发现前面的(只有I形)是斐波那契数列,后面的(有L和I型)是一个有规律的数列吧,我也不知道啥数列:2 + 3 = 5,5 + 6 = 11,11 + 12 = 23

        我也不知道对不对,没管后面了,直接编程交了,然后看了一下洛谷的,发现错了。

        代码就不给了,这个是错误思路,正解请移步洛谷P1990

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e7+10, mod=1000000007;
typedef long long LL;
LL f[N];
int n;

int main()
{
    cin>>n;
    f[1]=1;
    f[2]=2;
    f[3]=5;
    for(int i=4; i<=n; i++)
        f[i]=(2*f[i-1]%mod+f[i-3])%mod;
    cout<<f[n];
    return 0;
}

H 扫雷

 

 这个我好像用两个for,不知道能不能骗分,听一个小伙伴说是0分,那太好了,又错了.......

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 50010, M=999997;
LL h[M];  //哈希值
bool st[M];  //标记当前坑位是否被用过
int id[M];  //坑位对应的最大半径的炸雷的编号
int n,m;
//存储炸雷
struct circle
{
    int x,y,r;
}cir[N];

//把x和y合并起来
LL get_key(int x,int y)
{
    return x*1000000001ll+y;
}

//找坑位
int find(int x,int y)
{
    LL key=get_key(x,y);
    int t=(key%M+M)%M;
    //空坑位或者找到目标点
    while(h[t]!=-1 && h[t]!=key)
        if(++ t==M) t=0;
    return t;
}

int sqr(int x)
{
    return x*x;
}

void dfs(int x,int y,int r)
{
    st[find(x,y)]=true;
    for(int i=x-r; i<=x+r; i++)
        for(int j=y-r; j<=y+r; j++)
        {
            if(sqr(i-x)+sqr(j-y)<=sqr(r))
            {
                int t=find(i,j);
                if(!st[t] && id[t])
                    dfs(i,j,cir[id[t]].r);
            }
        }
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    for(int i=1; i<=n; i++)
    {
        int x,y,r;
        scanf("%d%d%d",&x,&y,&r);
        cir[i]={x,y,r};
        int t=find(x,y);  //找到对应的坑位
        if(h[t]==-1) h[t]=get_key(x,y);  //坑位对应一个哈希值
        if(!id[t] || cir[id[t]].r < r) id[t]=i;
    }
    //遍历导弹
    while (m -- )
    {
        int x,y,r;
        scanf("%d%d%d",&x,&y,&r);
        for(int i=x-r; i<=x+r; i++)
            for(int j=y-r; j<=y+r; j++)
            {
                if(sqr(i-x)+sqr(j-y)<=sqr(r))
                {
                    int t=find(i,j);
                    //当前位置有雷且未被遍历
                    if(!st[t] && id[t])
                        dfs(i,j,cir[id[t]].r);
                }
            } 
    }

    int res=0;
    for(int i=1; i<=n; i++)
        if(st[find(cir[i].x, cir[i].y)]) res++;
    cout<<res;
    return 0;
}

I 李白打酒加强版

dfs能骗分,考的时候没想出来 

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 105, mod=1000000007;
typedef long long LL;
int n,m,res;
LL f[N][N][N]; //店 花 酒

int main()
{
    cin>>n>>m;
    f[0][0][2]=1;
    for(int i=0; i<=n; i++)
        for(int j=0; j<=m; j++)
            for(int k=0; k<=m; k++)
            {
                if(i && k%2==0) f[i][j][k]=(f[i-1][j][k/2]+f[i][j][k])%mod;
                if(j && k>0) f[i][j][k]=(f[i][j-1][k+1]+f[i][j][k])%mod;

            }
    cout<<f[n][m-1][1]; //最后一次遇花留一斗
    return 0;
}

J 砍竹子

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 2e5+10, M=20;
typedef long long LL;
LL f[N][M];
int n, m, res;

int main()
{
    cin>>n;
    for(int i=0; i<n; i++)
    {
        int stk[M], hh=0;
        LL x;
        cin>>x;
        while(x>1) 
        {
            stk[hh++]=x;
            x=sqrtl(x/2+1);
            res++;
        }
        m=max(m,hh);
        for(int j=0; j<hh; j++)
            f[i][j]=stk[hh-j-1];
    }
    for(int i=0; i<m; i++)
        for(int j=1; j<n; j++)
            if(f[j][i]==f[j-1][i] && f[j][i])
                res--;
    cout<<res;
    return 0;
}

这次顶死40分,没省二咯,该退役咯~~~

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_谦言万语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值