在这里有两个卷积层,有两个池化层,有一个全连接层。
在第一个卷积层中:有6个卷积核,一个feature map分别经过6个卷积核(一个卷积核的深度为1)可得到六个feature map
在第一个池化层中只是对得到的6个feature进行尺寸变化,不改变通道数,同时卷积层也不改变尺寸数。
在第二个卷积层中:有6个feature map,6个feature map分别经过16个卷积核(一个卷积核的深度为6)可得到16个feature map
在第一个池化层中只是对得到的6个feature进行尺寸变化,不改变通道数,同时卷积层也不改变尺寸数。
总结:
- 卷积层 的作用是从输入图像中提取局部特征,并通过多个卷积核生成不同的特征图。每一层的卷积操作都会使得网络能够提取越来越抽象的特征。
- 池化层 的作用是进行下采样,减少计算量,增强特征的平移不变性,并有助于防止过拟合。
- 参考教程:【深度学习 搞笑教程】25 经典卷积神经网络 LeNet-5/AlexNet/ResNet | 草履虫都能听懂 零基础入门 | 持续更新_哔哩哔哩_bilibili