4. 寻找两个正序数组的中位数

 https://leetcode.cn/problems/median-of-two-sorted-arrays/description/icon-default.png?t=N7T8https://leetcode.cn/problems/median-of-two-sorted-arrays/description/

解题思路:

时间复杂度要求O(log(m+n)),要从m+n开始二分,中位数为第(m+n+1)/2加上第(m+n+2)/2的平均数,分别计算这两个数。假设现在求第k大的数,在nums1和nums2分别取k/2个数来比较,不够则取全部,小的一端排除,所以k减去k/2,之后被排除一部分的数组左端点更新,继续取k/2个数即可。

class Solution {
    int m,n;
    double getk(int k,int[] nums1, int[] nums2,int l1,int r1,int l2,int r2){
        //为空直接返回
        if(l1==m){
            return nums2[l2+k-1];
        }
        if(l2==n){
            return nums1[l1+k-1];
        }
        //递归出口
        if(k==1){
            return Math.min(nums1[l1],nums2[l2]);
        }
        //每个数组取k/2个数后比较的位置
        int mid1=Math.min(r1,l1+k/2-1);
        int mid2=Math.min(r2,l2+k/2-1);
        //排除k/2个数
        if(nums1[mid1]<nums2[mid2]){
            return getk(k-(mid1-l1+1),nums1,nums2,mid1+1,r1,l2,r2);
        }
        else{
            return getk(k-(mid2-l2+1),nums1,nums2,l1,r1,mid2+1,r2);
        }
    }
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        m=nums1.length;
        n=nums2.length;
        int len=m+n;
        //统一处理奇数偶数
        return (getk((len+1)/2,nums1,nums2,0,m-1,0,n-1)+getk((len+2)/2,nums1,nums2,0,m-1,0,n-1))/2;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

装B且挨揍の

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值