import java.util.Scanner;
/**
* @author 小卢先冲
* @date 2023/3/20 16:58
*/
public class 最大公约数 {
static int res = 0;
public static void main(String[] args) {
Scanner sca = new Scanner(System.in);
int x = sca.nextInt();
int y = sca.nextInt();
res = gcd1(x, y);
System.out.println("方法一:暴力穷举法 " + res);
res = gcd2(x, y);
System.out.println("方法二:辗转相除法 " + res);
res = gcd3(x, y);
System.out.println("方法三:递归法 " + res);
}
public static int gcd1(int x, int y) {
/**
* 1.暴力穷举法
*就是简单粗暴地把 1~ y(前面已经假设 x > y)都列出来分别判断是否为 x、y 的公约数,
*然后再找到其中最大的一个。
*/
for (int i = 2; i <= Math.min(x, y); i++) {
if (x % i == 0 && y % i == 0) {
res = i;
}
}
return res;
}
public static int gcd2(int x, int y) {
/**
* 2.辗转相除法
*假设要用辗转相除法求 36 和 24 的最大公约数,则要经历以下步骤:
*36 ÷ 24 = 1 …… 12
*24 ÷ 12 = 2 …… 0
*12 为 36 和 24 的最大公约数
* 即:先用 x 除以 y
* 若余数为 0 则 y 为两数的最大公约数;若余数不为零,则令 x = y,y = 余数,
* 重复步骤 1 直到余数为 0,此时的 y 为两数的最大公约数。
*/
while (y != 0) {
int yushu = x % y;
x = y;
y = yushu;
}
return x;
}
public static int gcd3(int x, int y) {
/**
* 3.递归
* 若x%y等于0,则gcd(x,y)等与y
* 否则,gcd(x,y)等于gcd(y,x%y)。
*/
return y != 0 ? gcd3(y, x % y) : x;
}
}
【Java】gcd 求最大公约数常见方法代码详解
于 2023-03-20 17:25:29 首次发布
该Java程序展示了计算两个整数最大公约数的三种方法:暴力穷举、辗转相除法和递归法。通过Scanner类获取用户输入,然后分别调用对应的函数计算并打印结果。
摘要由CSDN通过智能技术生成