【Java】gcd 求最大公约数常见方法代码详解

该Java程序展示了计算两个整数最大公约数的三种方法:暴力穷举、辗转相除法和递归法。通过Scanner类获取用户输入,然后分别调用对应的函数计算并打印结果。
摘要由CSDN通过智能技术生成
import java.util.Scanner;

/**
 * @author 小卢先冲
 * @date 2023/3/20 16:58
 */
public class 最大公约数 {
    static int res = 0;

    public static void main(String[] args) {
        Scanner sca = new Scanner(System.in);
        int x = sca.nextInt();
        int y = sca.nextInt();
        res = gcd1(x, y);
        System.out.println("方法一:暴力穷举法 " + res);
        res = gcd2(x, y);
        System.out.println("方法二:辗转相除法 " + res);
        res = gcd3(x, y);
        System.out.println("方法三:递归法 " + res);
    }

    public static int gcd1(int x, int y) {
        /**
         * 1.暴力穷举法
         *就是简单粗暴地把 1~ y(前面已经假设 x > y)都列出来分别判断是否为 x、y 的公约数,
         *然后再找到其中最大的一个。
         */
        for (int i = 2; i <= Math.min(x, y); i++) {
            if (x % i == 0 && y % i == 0) {
                res = i;
            }
        }
        return res;
    }

    public static int gcd2(int x, int y) {
        /**
         * 2.辗转相除法
         *假设要用辗转相除法求 36 和 24 的最大公约数,则要经历以下步骤:
         *36 ÷ 24 = 1 …… 12
         *24 ÷ 12 = 2 …… 0
         *12 为 36 和 24 的最大公约数
         * 即:先用 x 除以 y
         * 若余数为 0 则 y 为两数的最大公约数;若余数不为零,则令 x = y,y = 余数,
         * 重复步骤 1 直到余数为 0,此时的 y 为两数的最大公约数。
         */
        while (y != 0) {
            int yushu = x % y;
            x = y;
            y = yushu;
        }
        return x;
    }

    public static int gcd3(int x, int y) {
        /**
         * 3.递归
         * 若x%y等于0,则gcd(x,y)等与y
         * 否则,gcd(x,y)等于gcd(y,x%y)。
         */
        return y != 0 ? gcd3(y, x % y) : x;
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DaoJis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值