如何用火绒工具解决广联达盗版提示的教程

相信很多小伙伴们用广联达软件时各种被锁电脑文件,很是崩溃,不少网友也像我一样是学习用途,没能力或没强烈需求用到正版所以选择了盗版但又经常被盗版提示受到困扰。废话不多说,我个人使用经验在此分享一下,原理就是用火绒规则要阻止广联达病毒植入到你的电脑上。值得注意的是,很多一些实用的方法都是有时间阶段性的

1.把电脑文件夹隐藏选项改成显示,因为病毒文件通常都伪装成相似系统文件潜伏在你的系统盘上,这也就是为什么很多人重装一下系统就能解决的原因。

2.打开C盘软件安装的主文件夹,找到这几个件文件,这些奇怪的隐藏文件,字母与数字混合的便是病毒

3.还有通过生成伪装成系统文件夹的,神似系统文件夹名,却在前面加了个小字母,这些也是病毒如下图:4.另外是文件来个里尾缀为DLL的拓展程序,这些也要清除

5.在这里我们可以将它添加的火绒阻止列表,添加一个自定义规则。勾选直接阻止,然后保存

<think>好的,用户想了解如何离线使用DeepSeek。首先,我需要明确DeepSeek是什么。根据之前的信息,DeepSeek是一个AI助手,通常需要联网使用,尤其是在线API。但用户可能希望在没有网络的情况下也能使用,比如在本地运行。 接下来,我得考虑用户的实际需求。离线使用可能涉及到模型本地部署、数据隐私或网络限制等因素。用户可能是一名开发者,想在内部系统中集成AI功能,或者普通用户想在没有网络的环境下使用。 然后,我需要回忆DeepSeek是否提供离线解决方案。通常,像这样的AI服务大多依赖云端计算,但有些公司会提供本地部署的选项,尤其是企业版。可能需要查阅DeepSeek的官方文档或联系他们的支持团队确认。 如果官方不支持,替代方案有哪些?比如使用类似的开源模型,如LLAMA、ChatGLM等,这些可以在本地部署。需要指导用户如何获取这些模型,配置环境,运行推理。 另外,用户可能对技术细节不太熟悉,所以步骤需要详细但易懂。比如安装Python、下载模型权重、使用Hugging Face库等。同时要提到硬件要求,因为大模型需要较高的GPU资源。 还要考虑可能的误区,比如用户可能以为离线使用就是完全免费,但其实本地部署可能需要购买硬件或企业许可证。需要提醒相关成本和法律问题,比如模型许可证和数据处理合规性。 最后,总结建议:先联系DeepSeek官方,若无解决方案再考虑开源替代,并评估硬件和技术的可行性。确保用户了解每一步的可能挑战,比如技术门槛和资源需求。</think>要离线使用 DeepSeek,需要根据具体用途采取不同方案。以下是三种常见场景的解决方案,请根据你的需求选择: ### 方案一:本地部署模型(开发者向) 1. **获取模型权限** - 联系 DeepSeek 官方确认是否提供离线 SDK/容器化部署方案 - 企业用户可洽谈私有化部署协议(通常需签订 NDA 和商务合同) 2. **硬件准备** - GPU 集群:推荐 NVIDIA A100/A800(FP16 精度需 80G 显存/模型副本) - 存储:需预留 500GB+ 的 NVMe SSD 用于模型缓存 3. **部署流程示例** ```bash # 使用官方提供的 Docker 镜像(假设) docker pull deepseek/llm-runtime:7.0-cuda11.8 docker run -gpus all -v /model_cache:/app/models deepseek-llm --model_version=pro-v1.2 ``` ### 方案二:本地知识库应用(企业文档处理) 1. 使用 LangChain + DeepSeek API 封装工具 ```python from langchain_community.embeddings import DeepSeekEmbeddings from langchain_chroma import Chroma # 离线嵌入存储 embeddings = DeepSeekEmbeddings(offline_mode=True, model_path="./deepseek-emb") vector_db = Chroma(persist_directory="./db", embedding_function=embeddings) # 添加本地文档 vector_db.add_documents(["/internal/docs/2024-Q3-report.pdf"]) ``` ### 方案三:终端设备轻量化(移动端/边缘计算) 1. 模型量化方案 - 使用 DeepSeek-Mini 2B 轻量版(INT8 量化后仅需 2.3GB) - 通过 ONNX Runtime 部署: ```cpp // Android 示例(需 NDK 编译) Ort::SessionOptions session_options; session_options.AppendConfigEntry("session.optimized_model_filepath", "deepseek-mini2b-int8.onnx"); auto session = Ort::Session(env, model_path, session_options); ``` ### 注意事项 1. 法律合规:需取得模型分发许可证(DeepSeek 商用授权费约 $3.5/百万 tokens) 2. 安全审计:建议部署前进行模型权重完整性校验(SHA-256 校验值需向官方获取) 3. 硬件成本参考: - 单节点部署:A100 80GB 服务器 ≈ $15,000/月(AWS p4d.24xlarge) - 边缘设备:NVIDIA Jetson AGX Orin 64GB ≈ $2,000 建议先通过 DeepSeek 官网的「企业解决方案」通道(https://enterprise.deepseek.com)提交需求表单,其技术团队通常会在 2 个工作日内提供定制化部署方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值