代码随想录算法训练营第十一天 | 20. 有效的括号、1047. 删除字符串中的所有相邻重复项 、150. 逆波兰表达式求值

20.有效的括号

一、题目详情

给定一个只包括 '('')''{''}''['']' 的字符串 s ,判断字符串是否有效。

有效字符串需满足:

  1. 左括号必须用相同类型的右括号闭合。
  2. 左括号必须以正确的顺序闭合。
  3. 每个右括号都有一个对应的相同类型的左括号。

示例 1:

输入:s = "()"
输出:true

示例 2:

输入:s = "()[]{}"
输出:true

示例 3:

输入:s = "(]"
输出:false

提示:

  • 1 <= s.length <= 104
  • s 仅由括号 '()[]{}' 组成

二、解题思路

        用栈去实现匹配,根据栈后进先出的特点,如果是左括号就进栈,如果不是左括号就要判断栈是不是空的。如果不是空的,此时指向的右括号能跟栈的top的符号匹配,也就是这个括号匹配上了,弹出,如果不是空的,但指向的右括号能跟栈的top的符号匹不了,那就说明不是用相同类型的右括号闭合,返回错误。如果是空的,且此时指向的是右括号,这个右括号没有一个对应的相同类型的左括号,返回错误。如果遍历完了整个字符串,栈里面还有元素,那就说明栈里面的左括号没有右括号给匹配。如果以上三个坑都没踩,栈空了,那就是正确的了。

        看不懂的可以手动模拟多几遍。当时数据结构课要自己写栈类实现这个匹配,印象深刻,秒反应用栈。

三、解题代码

class Solution {
public:
    bool isValid(string s) {
        stack<char> Stack;
        for(int i = 0; i<s.length(); i++){
            if(s[i] == '(' | s[i] == '[' | s[i] == '{'){
                Stack.push(s[i]);
            }
            else if(!Stack.empty()){
                if((Stack.top()=='(' && s[i]==')') | (Stack.top()=='[' && s[i]==']') | 
                    (Stack.top()=='{' && s[i]=='}') ){
                    Stack.pop();
                }
                else{
                    return false;
                }
            }
            else if(s[i] == ')' | s[i] == '}' | s[i] == ']'){
                return false;
            }
        }
        if(Stack.size()==0){
            return true;
        }
        return false;
    }
};

1047. 删除字符串中的所有相邻重复项

一、题目详情

给出由小写字母组成的字符串 S重复项删除操作会选择两个相邻且相同的字母,并删除它们。

在 S 上反复执行重复项删除操作,直到无法继续删除。

在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。

示例:

输入:"abbaca"
输出:"ca"
解释:
例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。

提示:

  1. 1 <= S.length <= 20000
  2. S 仅由小写英文字母组成。

二、解题思路

        用栈秒杀的消消乐。这种就是一看题就想到栈的方法,跟上面的一样,没啥技巧。可能是数据结构课上从底层实现了两三遍栈吧ORZ。

        还是用栈思想去模拟多几遍就行了。

三、解题代码

class Solution {
public:
    string removeDuplicates(string s) {
        if(s.length()==0){
            return s;
        }
        stack<char> ReSta;
        string ans = "";
        int len = s.length();
        for(int i = len-1; i > -1; i--){
            if(ReSta.empty()){
                ReSta.push(s[i]);
            }
            else{
                if(ReSta.top() == s[i]){
                    ReSta.pop();
                }
                else{
                    ReSta.push(s[i]);
                }
            }
        }

        while(!ReSta.empty()){
            ans+=ReSta.top();
            ReSta.pop();
        }
        return ans;
        
    }
};

150. 逆波兰表达式求值

一、题目详情

给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。

请你计算该表达式。返回一个表示表达式值的整数。

注意:

  • 有效的算符为 '+''-''*' 和 '/' 。
  • 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
  • 两个整数之间的除法总是 向零截断 。
  • 表达式中不含除零运算。
  • 输入是一个根据逆波兰表示法表示的算术表达式。
  • 答案及所有中间计算结果可以用 32 位 整数表示。

示例 1:

输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例 2:

输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例 3:

输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

提示:

  • 1 <= tokens.length <= 104
  • tokens[i] 是一个算符("+""-""*" 或 "/"),或是在范围 [-200, 200] 内的一个整数

逆波兰表达式:

逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。

  • 平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
  • 该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。

逆波兰表达式主要有以下两个优点:

  • 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
  • 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中

二、解题思路

        逆波兰表达式,学栈的老朋友了,依旧是数据结构课实验(所以说真的有认真听课的!)。看题第一眼,以为是要实现中缀转后缀,眉头一皱(印象中就没自己写成功过几次)。定睛一看,哦,输入直接就是后缀啊,那洒洒水啦!

        也就是说题目要求利用栈实现后缀表达式的计算,后缀表达式就是把先算谁后算谁安排的明明白白了,无脑取数运算放数就行。从左到右扫描,遇到数字,压进栈,遇到符号,这里都是双目运算符,就取出两个数进行运算(-和/运算是后取出的-或/先取出的),得到的结果再压进栈里。

        总之对模拟的套路很熟悉了,至于为啥是这样的……忘了。

        这里有点点地方稍微卡住了,tokens里面的元素是string类型,也就是不能用switch语句,而且string转int的方法给忘了,毕竟以前是一个被老师要求自己实现不能用库函数的小菜鸡。

三、解题代码

class Solution {
public:
    
    int evalRPN(vector<string>& tokens) {
        stack<int> ansSta;
        for(int i = 0; i < tokens.size(); i++){
            if((tokens[i]=="+"|tokens[i]=="-"|tokens[i]=="*"|tokens[i]=="/")
                &&(!ansSta.empty())){
                int a = ansSta.top();
                ansSta.pop();
                int b = ansSta.top();
                ansSta.pop();
                if(tokens[i]=="+"){
                    ansSta.push(a+b);
                }
                if(tokens[i]=="-"){
                    ansSta.push(b-a);
                }
                if(tokens[i]=="*"){
                    ansSta.push(b*a);
                }
                if(tokens[i]=="/"){
                    ansSta.push(b/a);
                }
                
            }
            else{
                ansSta.push(atoi(tokens[i].c_str()));
            }
        }
        return ansSta.top();
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值