20.有效的括号
一、题目详情
给定一个只包括 '('
,')'
,'{'
,'}'
,'['
,']'
的字符串 s
,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
- 每个右括号都有一个对应的相同类型的左括号。
示例 1:
输入:s = "()" 输出:true
示例 2:
输入:s = "()[]{}" 输出:true
示例 3:
输入:s = "(]" 输出:false
提示:
1 <= s.length <= 104
s
仅由括号'()[]{}'
组成
二、解题思路
用栈去实现匹配,根据栈后进先出的特点,如果是左括号就进栈,如果不是左括号就要判断栈是不是空的。如果不是空的,此时指向的右括号能跟栈的top的符号匹配,也就是这个括号匹配上了,弹出,如果不是空的,但指向的右括号能跟栈的top的符号匹不了,那就说明不是用相同类型的右括号闭合,返回错误。如果是空的,且此时指向的是右括号,这个右括号没有一个对应的相同类型的左括号,返回错误。如果遍历完了整个字符串,栈里面还有元素,那就说明栈里面的左括号没有右括号给匹配。如果以上三个坑都没踩,栈空了,那就是正确的了。
看不懂的可以手动模拟多几遍。当时数据结构课要自己写栈类实现这个匹配,印象深刻,秒反应用栈。
三、解题代码
class Solution {
public:
bool isValid(string s) {
stack<char> Stack;
for(int i = 0; i<s.length(); i++){
if(s[i] == '(' | s[i] == '[' | s[i] == '{'){
Stack.push(s[i]);
}
else if(!Stack.empty()){
if((Stack.top()=='(' && s[i]==')') | (Stack.top()=='[' && s[i]==']') |
(Stack.top()=='{' && s[i]=='}') ){
Stack.pop();
}
else{
return false;
}
}
else if(s[i] == ')' | s[i] == '}' | s[i] == ']'){
return false;
}
}
if(Stack.size()==0){
return true;
}
return false;
}
};
1047. 删除字符串中的所有相邻重复项
一、题目详情
给出由小写字母组成的字符串 S
,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
输入:"abbaca" 输出:"ca" 解释: 例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。
提示:
1 <= S.length <= 20000
S
仅由小写英文字母组成。
二、解题思路
用栈秒杀的消消乐。这种就是一看题就想到栈的方法,跟上面的一样,没啥技巧。可能是数据结构课上从底层实现了两三遍栈吧ORZ。
还是用栈思想去模拟多几遍就行了。
三、解题代码
class Solution {
public:
string removeDuplicates(string s) {
if(s.length()==0){
return s;
}
stack<char> ReSta;
string ans = "";
int len = s.length();
for(int i = len-1; i > -1; i--){
if(ReSta.empty()){
ReSta.push(s[i]);
}
else{
if(ReSta.top() == s[i]){
ReSta.pop();
}
else{
ReSta.push(s[i]);
}
}
}
while(!ReSta.empty()){
ans+=ReSta.top();
ReSta.pop();
}
return ans;
}
};
150. 逆波兰表达式求值
一、题目详情
给你一个字符串数组 tokens
,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为
'+'
、'-'
、'*'
和'/'
。 - 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"] 输出:9 解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"] 输出:6 解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"] 输出:22 解释:该算式转化为常见的中缀算术表达式为: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
提示:
1 <= tokens.length <= 104
tokens[i]
是一个算符("+"
、"-"
、"*"
或"/"
),或是在范围[-200, 200]
内的一个整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )
。 - 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )
。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。 - 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
二、解题思路
逆波兰表达式,学栈的老朋友了,依旧是数据结构课实验(所以说真的有认真听课的!)。看题第一眼,以为是要实现中缀转后缀,眉头一皱(印象中就没自己写成功过几次)。定睛一看,哦,输入直接就是后缀啊,那洒洒水啦!
也就是说题目要求利用栈实现后缀表达式的计算,后缀表达式就是把先算谁后算谁安排的明明白白了,无脑取数运算放数就行。从左到右扫描,遇到数字,压进栈,遇到符号,这里都是双目运算符,就取出两个数进行运算(-和/运算是后取出的-或/先取出的),得到的结果再压进栈里。
总之对模拟的套路很熟悉了,至于为啥是这样的……忘了。
这里有点点地方稍微卡住了,tokens里面的元素是string类型,也就是不能用switch语句,而且string转int的方法给忘了,毕竟以前是一个被老师要求自己实现不能用库函数的小菜鸡。
三、解题代码
class Solution {
public:
int evalRPN(vector<string>& tokens) {
stack<int> ansSta;
for(int i = 0; i < tokens.size(); i++){
if((tokens[i]=="+"|tokens[i]=="-"|tokens[i]=="*"|tokens[i]=="/")
&&(!ansSta.empty())){
int a = ansSta.top();
ansSta.pop();
int b = ansSta.top();
ansSta.pop();
if(tokens[i]=="+"){
ansSta.push(a+b);
}
if(tokens[i]=="-"){
ansSta.push(b-a);
}
if(tokens[i]=="*"){
ansSta.push(b*a);
}
if(tokens[i]=="/"){
ansSta.push(b/a);
}
}
else{
ansSta.push(atoi(tokens[i].c_str()));
}
}
return ansSta.top();
}
};