内容简介
本文手把手教你通过 Python 代码搭建智能服务中台,实现 Kimi API 与微信公众号的无缝对接。文章将详解如何利用 Flask 框架构建微信消息处理引擎,结合 Kimi 的多模态 AI 能力(如长文本解析、数据分析),打造智能客服、内容生成等场景化应用。
Python 调用 Kimi Api 接口
打开 kimi 开发平台网站, 找到对应的选项 https://platform.moonshot.cn/console/api-keys, 点击新建 Api key。
调用 kimi 的主要代码实现如下:
from openai import OpenAI
import time
import random
client = OpenAI(
api_key = "your api key", # 在这里将 MOONSHOT_API_KEY 替换为你从 Kimi 开放平台申请的 API Key
base_url = "https://api.moonshot.cn/v1",
)
messages = [
{
"role": "system",
"content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。"
},
]
def chat(input: str) -> str:
time.sleep(random.randint(1, 3))
global messages
# 我们将用户最新的问题构造成一个 message(role=user),并添加到 messages 的尾部
messages.append({
"role": "user",
"content": input,
})
# 携带 messages 与 Kimi 大模型对话
completion = client.chat.completions.create(
model="moonshot-v1-8k",
messages=messages,
temperature=0.3,
)
assistant_message = completion.choices[0].message
messages.append(assistant_message)
return assistant_message.content
运行结果如下:
Flask 框架构建微信消息处理引擎
代码实现如下:
from flask import Flask, request
from kimi_chat import chat
import xml.etree.ElementTree as ET
import hashlib
import time
app = Flask(__name__)
# 你的微信公众号配置信息
TOKEN = "you token" # 替换为你在公众号后台设置的Token
def check_signature(signature, timestamp, nonce):
"""验证微信服务器发来的请求"""
# 按微信的规则进行签名验证
temp = [TOKEN, timestamp, nonce]
temp.sort()
temp_str = ''.join(temp)
hash_obj = hashlib.sha1(temp_str.encode('utf-8'))
if hash_obj.hexdigest() == signature:
return True
return False
@app.route('/', methods=['GET', 'POST'])
def wechat():
if request.method == 'GET':
# 处理微信服务器的验证请求
signature = request.args.get('signature', '')
timestamp = request.args.get('timestamp', '')
nonce = request.args.get('nonce', '')
echostr = request.args.get('echostr', '')
if check_signature(signature, timestamp, nonce):
return echostr
return 'Invalid Request'
elif request.method == 'POST':
# 处理用户发送的消息
xml_data = request.data
if not xml_data:
return 'Invalid Request'
# 解析XML数据
xml_tree = ET.fromstring(xml_data)
msg_type = xml_tree.find('MsgType').text
if msg_type == 'text':
# 获取用户发送的文本消息
user_msg = xml_tree.find('Content').text
from_user = xml_tree.find('FromUserName').text
to_user = xml_tree.find('ToUserName').text
kimi_reply = chat(user_msg)
# 构造回复消息
reply = f"""
<xml>
<ToUserName><![CDATA[{from_user}]]></ToUserName>
<FromUserName><![CDATA[{to_user}]]></FromUserName>
<CreateTime>{int(time.time())}</CreateTime>
<MsgType><![CDATA[text]]></MsgType>
<Content><![CDATA[{kimi_reply}]]></Content>
</xml>
"""
return reply
return 'success'
if __name__ == '__main__':
# 启动服务器,使用SSL证书(微信要求必须使用HTTPS)
app.run(host='0.0.0.0', port=8080)
这里需要使用内网穿透将内网暴露在公网上,方便后续的微信公众号配置,这里使用贝瑞花生壳来实现。
这个时候就可以通过浏览器输入 https://761rg252nf06.vicp.fun 来访问自己的内网了。
微信公众号的开发者配置
首先需要自己注册一个微信公众号,点击开发接口管理进行服务器配置。
这个时候运行 Flask 程序,访问自己的微信公众号就可以实现 Kimi API 和微信公众号对接。