线性dp数字三角形

数字三角形与动态规划

数字三角形是最裸的题目,没有加入任何的背景,这里就不写了。

下面这道摘花生的题目就是数字三角形的应用


Hello Kitty想摘点花生送给她喜欢的米老鼠。

她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。

地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上面所有的花生。

Hello Kitty只能向东或向南走,不能向西或向北走。

问Hello Kitty最多能够摘到多少颗花生。

1.gif

输入格式

第一行是一个整数T,代表一共有多少组数据。

接下来是T组数据。

每组数据的第一行是两个整数,分别代表花生苗的行数R和列数 C。

每组数据的接下来R行数据,从北向南依次描述每行花生苗的情况。每行数据有C个整数,按从西向东的顺序描述了该行每株花生苗上的花生数目M。

输出格式

对每组输入数据,输出一行,内容为Hello Kitty能摘到得最多的花生颗数。

数据范围

1≤T≤100
,
1≤R,C≤100
,
0≤M≤1000

输入样例:

2
2 2
1 1
3 4
2 3
2 3 4
1 6 5
输出样例:

8
16

#include<iostream>
using namespace std;
const int N = 110;
int w[N][N];
int f[N][N];

int main()
{
    int T;cin >> T;
    while(T --)
    {   
        int n, m;cin >> n >> m;
        for(int i = 1; i <= n; ++ i)
            for(int j = 1; j <= m; ++ j)
                scanf("%d", &w[i][j]);

        for(int i = 1; i <= n; ++ i)
            for(int j = 1; j <= m; ++ j)
                f[i][j] = max(f[i - 1][j], f[i][j - 1]) + w[i][j];
        cout << f[n][m] << endl;
    }
    return 0;
}

这道最低通行费的题目又是对摘花生题目的一个变形



一个商人穿过一个 N×N
的正方形的网格,去参加一个非常重要的商务活动。

他要从网格的左上角进,右下角出。

每穿越中间 1
个小方格,都要花费 1
个单位时间。

商人必须在 (2N−1)
个单位时间穿越出去。

而在经过中间的每个小方格时,都需要缴纳一定的费用。

这个商人期望在规定时间内用最少费用穿越出去。

请问至少需要多少费用?

注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。

输入格式

第一行是一个整数,表示正方形的宽度 N

后面 N
行,每行 N
个不大于 100
的正整数,为网格上每个小方格的费用。

输出格式

输出一个整数,表示至少需要的费用。

数据范围

1≤N≤100

输入样例:

5
1 4 6 8 10
2 5 7 15 17
6 8 9 18 20
10 11 12 19 21
20 23 25 29 33
输出样例:

109
样例解释

样例中,最小值为 109=1+2+5+7+9+12+19+21+33

#include <iostream>

using namespace std;
const int N = 110, INF = 1e9;
int f[N][N], w[N][N];

int main()
{
    int n;cin >> n;
    for(int i = 1; i <= n; ++ i)
        for(int j = 1; j <= n; ++ j)
            scanf("%d", &w[i][j]);
    for(int i = 1; i <= n; ++ i)
        for(int j = 1; j <= n; ++ j)
        if(i == 1 && j == 1)  f[i][j] = w[i][j];
        else
        {
            f[i][j] = INF;
            if(i > 1)   f[i][j] = min(f[i][j], f[i - 1][j] + w[i][j]);
            if(j > 1)   f[i][j] = min(f[i][j], f[i][j - 1] + w[i][j]);
        }
        
    cout << f[n][n] << endl;
    return 0;
    
}

未完待续…

### 什么是线性DP线性动态规划(Linear Dynamic Programming,简称线性DP)是动态规划的一种基本形式,其特点是状态的转移呈现线性结构,即状态之间的依赖关系是单向且连续的。通常,这类问可以通过一维或二维数组进行状态表示,并通过递推关系逐步求解。 线性DP常用于处理序列问,如最大子段和、最长上升子序列、数字三角形、传球游戏等。其核心思想是将原问拆解为多个子问,并通过状态转移方程将前面的结果传递给后续状态,从而避免重复计算,提高效率 [^1]。 ### 状态表示与状态转移 在动态规划中,状态表示是解决问的关键。线性DP中的状态通常具有以下特征: - **状态维度**:状态通常是一维或二维的,例如`dp[i]`表示以第`i`个元素结尾的最优解。 - **状态转移方式**:当前状态`dp[i]`往往依赖于前面的状态`dp[i-1]`或`dp[i-k]`,有时也可能依赖多个前驱状态,如`dp[i] = max(dp[i-1], dp[i-2])` [^4]。 例如,在最大子段和问中,状态表示为`dp[i]`表示以`a[i]`结尾的最大连续子段和,状态转移方程为: ```cpp dp[i] = max(dp[i-1] + a[i], a[i]) ``` 最终的最大子段和则是所有`dp[i]`中的最大值 [^4]。 ### 应用场景 线性DP广泛应用于以下问: - **最大子段和**:给定一个整数序列,求其连续子序列的最大和。 - **最长上升子序列**:在一个序列中找出最长的严格递增子序列。 - **数字三角形**:从三角形顶部到底部,每一步只能走到相邻节点,求路径的最大值。 - **传球游戏**:求从起点传球`k`次后回到起点的方案数。 - **乌龟棋**:使用不同类型的卡片前进,求能到达的最大分数。 例如,在数字三角形中,可以使用二维DP进行求解: ```cpp #include <iostream> #include <algorithm> using namespace std; const int N = 510; int n, INF = 1e9; int a[N][N], f[N][N]; int main() { cin >> n; for (int i = 1; i <= n; i++) for (int j = 1; j <= i; j++) cin >> a[i][j]; for (int i = 0; i <= n; i++) for (int j = 0; j <= i + 1; j++) f[i][j] = -INF; f[1][1] = a[1][1]; for (int i = 2; i <= n; i++) for (int j = 1; j <= i; j++) f[i][j] = max(f[i - 1][j - 1] + a[i][j], f[i - 1][j] + a[i][j]); int res = -INF; for (int i = 1; i <= n; i++) res = max(res, f[n][i]); cout << res << endl; return 0; } ``` 该程序使用了线性DP的思想,通过状态转移逐步计算出每一层的最大路径和 [^3]。 ### 优化策略 线性DP在实际应用中可以通过以下方式进行优化: - **滚动数组优化**:当状态只依赖于前一层状态时,可以用一维数组代替二维数组,节省空间。 - **前缀和优化**:对于某些涉及区间和的问,可以预处理前缀和数组,从而减少重复计算。 - **单调队列/双端队列优化**:在特定条件下,如滑动窗口最值问中,可以利用单调队列优化状态转移过程 [^1]。 ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值