2024牛客寒假算法基础集训营1(补题)

文章目录

A

n的范围很小暴力直接 O ( n 3 ) O(n^3) O(n3)直接做就行。
我还傻的统计了一下前后缀,不过怎么写都行这道题。

#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define ls p<<1
#define rs p<<1|1
#define PII pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define ull unsigned long long
#define db double
#define endl '\n'
#define debug(a) cout<<#a<<"="<<a<<endl;
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define INF 0x3f3f3f3f 
#define x first
#define y second

using namespace std;

const int N=30,mod=1e9+7;
int n,m,a[N],b[N],k;
int f[60][60];
char s[60];
int l[60],r[60]; 
bool st=false;



void solve()
{
	int n;cin>>n;
	rep(i,1,59)	l[i]=r[i]=0;
	cin>>(s+1);
	//DFS
	map<char,int>cnt;
	rep(i,1,n)
	{
		if(cnt.find('D')!=cnt.end())	l[i]=1;
		cnt[s[i]]=1;
	}
	cnt.clear();
	fep(i,n,1)
	{
		if(cnt.find('S')!=cnt.end())	r[i]=1;
		cnt[s[i]]=1;
	}
	//
	bool st=1;
	rep(i,1,n)
	{
		if(s[i]=='F'&&l[i]==1&&r[i]==1)
		{
			cout<<1<<' ';
			st=0;
			break;
		}
	}
	if(st)	cout<<0<<' ';
	
	
	//dfs
	st=1;
	rep(i,1,59)	l[i]=r[i]=0;
	cnt.clear();
	
	rep(i,1,n)
	{
		if(cnt.find('d')!=cnt.end())	l[i]=1;
		cnt[s[i]]=1;
	}
	cnt.clear();
	fep(i,n,1)
	{
		if(cnt.find('s')!=cnt.end())	r[i]=1;
		cnt[s[i]]=1;
	}
	rep(i,1,n)
	{
		if(s[i]=='f'&&l[i]==1&&r[i]==1)
		{
			cout<<1<<' ';
			st=0;
			break;
		}
	}
	if(st)	cout<<0<<' ';
	cout<<endl;
}

signed main()
{
	IOS	
//  	freopen("1.in", "r", stdin);
  	int _;
	cin>>_;
	while(_--)
	solve();
	return 0;
}

B

赛时的思路是:周围三个点特判,然后左边求最小和右边求最小,最后和特判取最小。
代码写的比较一坨很乱,最后也没调出来。
遇见这种感觉还是重写吧。
主要就是分类讨论

  1. 看鸡左边被堵没有
  2. 看鸡右边被堵没有
  3. 看鸡左边有没有火
  4. 看鸡右边有没有火
  5. 特判(2,0)
    自己写的太丑了,放一份加了注释的jls的代码吧。
#include <bits/stdc++.h>

using i64 = long long;

void solve() {
    int n;
    std::cin >> n;
    
	//left1表示左边是否有火,right1表示右边是否有火
	//left2表示左边是否能堵住鸡,right2表示右边是否能堵住鸡
    int left1 = 0, left2 = 0;
    int right1 = 0, right2 = 0;
    
    std::set<std::pair<int, int>> s;
    for (int i = 0; i < n; i++) {
        int r, c;
        std::cin >> r >> c;
        
        if (c <= 0) {
            left1 = 1;
        }
        if (c >= 0) {
            right1 = 1;
        }
        s.emplace(r, c);
    }
    
    for (auto [r, c] : s) {
        if (!c) {
            continue;
        }
		//这里和3异或真的简化了很多代码
        if (s.count({r ^ 3, c}) || s.count({r ^ 3, c + (c > 0 ? -1 : 1)})) {
            if (c > 0) {
                right2 = 1;
            } else {
                left2 = 1;
            }
        }
    }
    
    int ans = 4 - left1 - left2 - right1 - right2;
    ans = std::min(ans, int(3 - s.count({2, 0}) - s.count({1, -1}) - s.count({1, 1})));
    std::cout << ans << "\n";
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    
    int t;
    std::cin >> t;
    
    while (t--) {
        solve();
    }
    
    return 0;
}

C


S m i n = 所有人办事的时间 + 等待时间 S_{min}=所有人办事的时间+等待时间 Smin=所有人办事的时间+等待时间
等待时间 = T 1 ∗ n + T 2 ∗ ( n − 1 ) + . . . + T n ∗ 1 等待时间=T_1 * n + T_2 * (n-1)+...+ T_n * 1 等待时间=T1n+T2(n1)+...+Tn1
这就转化成了一个经典的问题排序不等式
T 1 、 T 2 、 . . . 、 T n T_1、T_2、...、T_n T1T2...Tn按从小到大的对应和n~1相乘
然后看鸡能查到谁的前面


#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define ls p<<1
#define rs p<<1|1
#define PII pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define ull unsigned long long
#define db double
#define endl '\n'
#define debug(a) cout<<#a<<"="<<a<<endl;
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define INF 0x3f3f3f3f 
#define x first
#define y second

using namespace std;

const int N=1e5+10,mod=1e9+7;
int n,q,tc;
int t[N],d[N];

//x为鸡插队的时间
bool check(int x,int m)
{
	//找到受鸡插队影响的第一个位置 
	int l=1,r=n;
	int k=upper_bound(d+1,d+1+n,x)-d;
	int sum=(n-k+1)*tc;
	return sum<=m;
}

void solve()
{
	cin>>n>>q>>tc;
	rep(i,1,n)	cin>>t[i];
	sort(t+1,t+1+n);
	int sm=0;
	//计算每个人不满意度,sm就是没插队的最小不满意度 
	//di也是每个人完成工作的时间 
	rep(i,1,n)	d[i]=d[i-1]+t[i],sm+=d[i];
	
	rep(i,1,q)
	{
		int m;cin>>m;
		int l=0,r=d[n];
		while(l<r)
		{
			int mid=(l+r)>>1;
			if(check(mid,m))	r=mid;
			else	l=mid+1;
		}
		cout<<l+tc<<endl;
	}
}

signed main()
{
	IOS	
//   	freopen("1.in", "r", stdin);
  	int _;
//	cin>>_;
//	while(_--)
	solve();
	return 0;
}

D

代码是参考jls的,写的真的很优雅
思路:
这里有一个小 t r i c k trick trick,数相乘的话会很大,而 M M M只有 1 e 9 1e9 1e9, 2 3 0 2^30 230就会到达 1 e 9 1e9 1e9
也就是说,不为0的数相乘很快会超范围有很多不合法的。
对于相同的数,平移的话是都是一样的。
我们考虑不同的数有多少个。
不同的数最多有20个,20个的话就会相乘就会超范围。
然后里面就暴力去瞎搞就行

#include <bits/stdc++.h>
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define _for(i,a,b) for(int i=(a); i<(b); ++i)
#define pii pair<int, int>
#define pdd pair<double,double>
#define ll long long
#define db double
#define endl '\n'
#define x first
#define y second
#define pb push_back
#define vi vector<int>

using namespace std;
const int maxn=1e5+10,mod=1e9+7,K=4e4,inf=1e9;


void solve() {
	int n,Q;
	cin>>n>>Q;
	map<int,int>cnt;
	rep(i,1,n) {
		int a;
		cin>>a;
		cnt[a]+=1;
	}
	set<int>s{0};
	//只有当不同的数为20个以内时乘起来才不会超出范围
	if(cnt.size()<=20) {
		//将map中的内容复制到vector中
		vector<pii>a(cnt.begin(),cnt.end());
		int n=a.size();
		int d=a[0].x-K;
		//枚举每一个数
		_for(i,0,n) {
			//枚举每一个数进行两种操作的总的变化量
			for(d=max(d,a[i].x-K); d<=a[i].first+K;d++) {
				//从前往后算一遍答案				
				int res=1;
				_for(j,0,n) {
					//看一下这个数会变成的数,v
					int v=a[j].x-d;
					//1的话对res没有影响
					if(v==1) {
						continue;
					}
					//-1的话看值为这个数的有多少个
					if(v==-1) {
						if(a[j].y%2==1) {
							res*=-1;
						}
						continue;
					}
					//两个都不是的话就把,所有值为这个数的都乘上去
					_for(c,0,a[j].y) {
						res*=v;
						//中间溢出范围直接退出
						if(abs(res)>inf) {
							break;
						}
					}
					//溢出的话直接退出
					if(abs(res)>inf) {
						break;
					}
				}
				//满足的话用set存一下,供查询
				if(abs(res)<=inf) {
					s.insert(res);
				}
			}
		}
	}
	while(Q--) {
		int M;
		cin>>M;
		if(s.count(M)) {
			cout<<"Yes"<<endl;
		} else {
			cout<<"No"<<endl;
		}
	}
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
//	freopen("1.in", "r", stdin);
	int _;
//	cin>>_;
//	while(_--)
	solve();
	return 0;
}

E

e题看到数据范围n和m都很小,dfs,对于每场比赛,ab两位选手,考虑每场比赛。
ab两位选手

  1. a胜b败
  2. a败b胜
  3. ab平局
#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define ls p<<1
#define rs p<<1|1
#define PII pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define ull unsigned long long
#define db double
#define endl '\n'
#define debug(a) cout<<#a<<"="<<a<<endl;
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define INF 0x3f3f3f3f 
#define x first
#define y second

using namespace std;

const int N=20,mod=1e9+7;
int n,m,ans;
struct node
{
	int val,idx;
	bool operator <(const node t)
	{
		return val>t.val;
	}
}a[N],b[N];

PII op[N];

void dfs(int u)
{
	if(u==m+1)
	{
		memcpy(b,a,sizeof a);
		sort(b+1,b+1+n);
//		cout<<"AAAAAA"<<endl;
//		rep(i,1,n)	cout<<a[i].idx<<' '<<a[i].val<<endl;
		int k=0;
		rep(i,1,n)	if(b[i].idx==1)	k=i;
		ans=min(ans,k);
		return;
	}
	int x=find(op[u].x),y=find(op[u].y);
	//x胜
	a[x].val+=3;
	dfs(u+1); 
	a[x].val-=3;
	
	//y胜
	a[y].val+=3;
	dfs(u+1); 
	a[y].val-=3;
	
	//平局
	a[x].val+=1;
	a[y].val+=1;
	dfs(u+1); 
	a[x].val-=1;
	a[y].val-=1;
}

void solve()
{
	cin>>n>>m;
	ans=n;
	rep(i,1,n)
	{
		int x;cin>>x;
		a[i]={x,i};
	}
	int k=0;
	rep(i,1,m)
	{
		int x,y;cin>>x>>y;
		if(x>y)	swap(x,y);
		op[++k]={x,y};
	}
	dfs(1);
	cout<<ans<<endl;
    return;
}

signed main()
{
	IOS	
//  	freopen("1.in", "r", stdin);
  	int _;
	cin>>_;
	while(_--)
	solve();
	return 0;
}

F

考的是知识点 第二类斯特林数
从题目还是比较容易看出来这是一道第二类斯特林数的题目的,直接从前往后求一遍通项公式。
需要补一下组合数学的知识
d7039fd6bc9ff6fe6361180a79f2f5b.jpg
image

#include <bits/stdc++.h>
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define pii pair<int, int>
#define pdd pair<double,double>
#define ll long long
#define db double
#define endl '\n'
#define x first
#define y second
#define pb push_back
#define vi vector<int>

using namespace std;
const int maxn=1e6+10,mod=1e9+7;

int ksm(int a,int b, int p){
	int res=1;
	while(b){
		if(b&1)	res=res*a%p;
		a=a*a%p;
		b>>=1;	
	}
	return res;
}
int fac[maxn],invfac[maxn];
void solve() {
	int n,m;
	cin>>n>>m;
// 	vi fac(n+1),invfac(n+1);
	fac[0]=invfac[0]=1;
	rep(i,1,maxn){
		fac[i]=fac[i-1]*i%mod;
		invfac[i]=ksm(fac[i],mod-2,mod);
	}      
	int ans=0;
	rep(i,0,m){
		ans+=((m-i)&1?-1:1)*ksm(i,n,mod)%mod*invfac[i]%mod*invfac[m-i]%mod;
        ans%=mod;
	}
	cout<<(ans+mod)%mod<<endl;
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
//	freopen("1.in", "r", stdin);
	int _;
//	cin>>_;
//	while(_--)
	solve();
	return 0;
}

G

前缀和,先对优惠卷按价格排序,然后根据优惠卷可叠加,我们可以知道只要优惠的钱+m>=商品原价就可以更新答案。

#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define ls p<<1
#define rs p<<1|1
#define PII pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define ull unsigned long long
#define db double
#define endl '\n'
#define debug(a) cout<<#a<<"="<<a<<endl;
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define INF 0x3f3f3f3f 
#define x first
#define y second

using namespace std;

const int N=1e5+10,mod=1e9+7;
int n,m;
struct node
{
	int x,y;
	bool operator <(const node t)
	{
		return x<t.x;	
	} 
}a[N];

void solve()
{
	cin>>n>>m;
	rep(i,1,n)	cin>>a[i].x>>a[i].y;
	sort(a+1,a+1+n);
	int ans=0,sum=0;
	rep(i,1,n)
	{
		sum+=a[i].y;
		if(sum+m>=a[i].x)
		{
			ans=max(ans,sum+m);
		}
	}
	if(!ans)	cout<<m<<endl;
	else	cout<<ans<<endl;
}

signed main()
{
	IOS	
//  	freopen("1.in", "r", stdin);
  	int _;
	cin>>_;
	while(_--)
	solve();
	return 0;
}

H

位运算贪心
涉及到位运算的题一定要把数字当成二进制串看
并且不存在进位意味着–位和位之间是独立的
一般都是贪心的考虑每一位。

对于m我们设第x位为1,设选中的物品与起来为sum,如果sum的第x位为0,那么第x位之后所有的位都是任意的

  • 枚举第x位
  • 选择物品的第x位是0
  • 选择物品的高位应该是m高位的子集
  • 低位任意

#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define pii pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define ull unsigned long long
#define db double
#define endl '\n'
#define x first
#define y second
#define pb push_back

using namespace std;

void solve()
{
	int n,m;cin>>n>>m;
	vector<int>v(n+1),w(n+1);
	rep(i,1,n)	cin>>v[i]>>w[i];
	
	int ans=0;
	auto check=[&](int s)
	{
		int res=0;
		rep(i,1,n)
		{
            //==的优先级高于&
			if((s&w[i])==w[i])
			{
				res+=v[i];
			}
		}
		ans=max(ans,res);
	};
	
	check(m);
	fep(i,29,0)
	{
		if((m>>i)&1)
		{
			check(m^(1<<i)|((1<<i)-1));	
		}
	}

	cout<<ans<<endl;
	return;
}
signed main()
{
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
//   	freopen("1.in", "r", stdin);
  	int _;
	cin>>_;
	while(_--)
	solve();
	return 0;
}

I


两种方式的区别在于半径。
我们可以模拟题目中的过程然后在本地多跑几组数据看看r的均值有什么规律
技巧就是打表找规律


#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define pii pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define ull unsigned long long
#define db double
#define endl '\n'
#define x first
#define y second
#define pb push_back

using namespace std;
const int N=2010;

int mod=1e9+7;

void solve()
{
	int n;cin>>n;
	int s=0;
	rep(i,1,n)
	{
		int x,y,r;cin>>x>>y>>r;
		s+=r;
	}
	if(s/n<20.0)	cout<<"bit-noob"<<endl;
	else	cout<<"buaa-noob"<<endl;
	return;
}
signed main()
{
	ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
//   	freopen("1.in", "r", stdin);
  	int _;
	cin>>_;
	while(_--)
	solve();
	return 0;
}

J

#include <bits/stdc++.h>
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define _for(i,a,b) for(int i=(a); i<(b); ++i)
#define pii pair<int, int>
#define pdd pair<double,double>
#define ll long long
#define db double
#define endl '\n'
#define x first
#define y second
#define pb push_back
#define vi vector<int>

using namespace std;
const int maxn=1e5+10,mod=1e9+7,K=4e4,inf=1e9;
int a[maxn];
int n,x,y;

bool check(int tar) {
	set<int>S;
	if(abs(x-y)<=tar)	S.insert(y);
	int lst=x;
	rep(i,1,n){
		if(S.size()&&abs(a[i]-lst)<=tar){
			S.insert(lst);
		}
		while(S.size()&&abs(*S.begin()-a[i])>tar)	S.erase(*S.begin());
		while(S.size()&&abs(*S.rbegin()-a[i])>tar)	S.erase(*S.rbegin());
		lst=a[i];
	}
	return S.size();
}

void solve() {
	cin>>n>>x>>y;
	rep(i,1,n) {
		cin>>a[i];
	}
	int l=0,r=1e9;
	while(l<r) {
		int mid=(l+r)>>1;
		if(check(mid)) {
			r=mid;
		} else {
			l=mid+1;
		}
	}
	cout<<l<<endl;
}

signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
//	freopen("1.in", "r", stdin);
	int _;
//	cin>>_;
//	while(_--)
	solve();
	return 0;
}


K

基环树

L


这道题应该是个签到题。主要是题面有点吓人。
直接考虑光源在最下面,这种情况地上的未被照射到的面积应该是最大的。
面积很好求,就是一个等腰梯形的面积。


#include <bits/stdc++.h> 
#define int long long
#define rep(i,a,b) for(int i = (a); i <= (b); ++i)
#define fep(i,a,b) for(int i = (a); i >= (b); --i)
#define ls p<<1
#define rs p<<1|1
#define PII pair<int, int>
#define pll pair<long long, long long>
#define ll long long
#define ull unsigned long long
#define db double
#define endl '\n'
#define debug(a) cout<<#a<<"="<<a<<endl;
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define INF 0x3f3f3f3f 
#define x first
#define y second

using namespace std;

const int N=1e5+10,mod=1e9+7;
int n,q,tc;

void solve()
{
	int c,d,h,w;cin>>c>>d>>h>>w;
	db ans=1.0*(6*w)*c/2;
	printf("%.5lf\n",ans);
}
signed main()
{
// 	IOS	
//  	freopen("1.in", "r", stdin);
  	int _;
	cin>>_;
	while(_--)
	solve();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值