C++ | AVL树的规则及其插入过程的讲解与实现

前言

如果map/set的底层使用二叉搜索树实现,当插入数据接近有序时,二叉搜索树就会退化成单支树,搜索效率退化成O(n)。为解决退化的问题,需要map/set底层实现的二叉搜索树做平衡处理

AVL树的概念

作为平衡树的一种,AVL树有以下性质

1.左右子树都是AVL树
2.左右子树的高度差(又称平衡因子,平衡因子=右树高度-左树高度)的绝对值不超过1

AVL树的搜索效率为O(logN),如果树有n个节点,它的高度保持在logN,AVL树做到了严格的平衡

AVL树实现

结构定义

template <class K, class V>
struct AVLNode
{
	pair<K, V> _kv;
	AVLNode* _left;
	AVLNode* _right;
	AVLNode* _parent;

	int _bf;

	AVLNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
		,_kv(kv)
	{}
};

template <class K, class V>
class AVLTree
{
	typedef AVLNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv);
	
	void Inorder() { _Inorder(_root); }
	void Leorder() { _Leorder(_root); }
	bool IsAVLTree() { return _IsAVLTree(_root); }
private:
	Node* _root = nullptr;
	void RotateL(Node* parent);
	void RotateR(Node* parent);
	void RotateRL(Node* parent);
	void RotateLR(Node* parent);
	void _Inorder(Node* root);
	void _Leorder(Node* root);
	int _Height(Node* root);
	bool _IsAVLTree(Node* root);
};

AVL树的节点实现了三叉链,即增加了一个parent指针,另外bf作为平衡因子用来平衡整颗树。

左单旋

在这里插入图片描述
A,B,C是三颗高度相同的子树

左单旋:往较高的右子树的右边插入节点,由于parent右子树subR比parent左子树A高出一个节点,所以只要往右子树的subR插入节点,subR的高度都将会高于2个节点,不满足AVL树的性质。由于parent小于subR,将parent作为subR的左子树,B大于parent,将B作为parent的右子树。旋转前subR的平衡因子为1,右边较高,旋转后subR达到平衡,subR作为新的根节点。

template <class K, class V>
void AVLTree<K, V>::RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	subR->_left = parent;
	parent->_right = subRL;

	pparent = parent->_parent;
	parent->_parent = subL;

	if (subRL)
		subRL->_parent = parent;
	if (_root == parent) 
	{
		_root = subL;
		subR->_parent = nullptr;    
	}
	else // 该子树是树的一部分,将子树链接到原树
	{
		subR->_parent = pparent;
		if (subR->_kv.first < pparent->_kv.first)
		{
			pparent->_left = subR;
		}
		else
		{
			pparent->_right = subR;
		}
	}

	parent->_bf = 0;
	subR->_bf = 0;
	if (subRL)
		subRL->_bf = 0;
}

右单旋

在这里插入图片描述
右单旋:往较高的左子树的左边插入节点,将parent向右旋转,parent做subL的右孩子,subL的右孩子做parent的左孩子,subL做根。


template <class K, class V>
void AVLTree<K, V>::RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	subL->_right = parent;
	parent->_left = subLR;

	pparent = parent->_parent;
	parent->_parent = subL;

	if (subLR)
		subLR->_parent = parent;
	if (_root == parent)
	{
		_root = subL;
		subL->_parent = nullptr;
	}
	else
	{
		subL->_parent = pparent;
		if (subL->_kv.first < pparent->_kv.first)
		{
			pparent->_left = subL;
		}
		else
		{
			pparent->_right = subL;
		}
	}

	parent->_bf = 0;
	subL->_bf = 0;
	if (subLR)
		subLR->_bf = 0;
}

右左双旋

在这里插入图片描述
右左双旋:插入较高右子树的左边,parent的平衡因子为1,插入后为2,需要进行调整。其中B,C的高度为h-1,只有当h大于等于1时才符和上图的情况。parent的右子树subR较高,往subR的右边插入节点,需要左单旋,而往subR的左边subRL的任意子树插入节点就需要进行右左双旋。以往B子树插入节点,subRL的平衡因子为-1,subR也为-1,parent为2,先对subR进行右单旋,subR做subRL的右子节点,subRL之前的右子节点做subR的左子节点,旋转后的树就是一个左单旋的情况,对parent进行左单旋,完成后parent的平衡因子为0,subR为1,subRL为0。

当往subRL的右子树插入节点,右左双旋之后subRL的平衡因子为0,parent为-1,subR为0。

还有一种特殊情况,上面讨论的范围都是在h大于等于1时,当h为0,即只有parent,subR,subRL的情况,旋转后每个节点的平衡因子都为0。

template <class K, class V>
void AVLTree<K, V>::RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	size_t bf = subRL->_bf;
	RotateR(subR);
	RotateL(parent);

	if (bf == 0)
	{
		subR->_bf = 0;
		subRL->_bf = 0;
		parent->_bf = 0;
	}
	else if (bf == -1)
	{
		subR->_bf = 1;
		subRL->_bf = 0;
		parent->_bf = 0;
	}
	else if (bf == 1)
	{
		subR->_bf = 0;
		subRL->_bf = 0;
		parent->_bf = 1;
	}
	else
	{
		assert(false);
	}
}

左右双旋

在这里插入图片描述

同样,往较高左子树的左边插入节点,需要右单旋,而往较高左子树的右边插入节点需要左右双旋,之后平衡因子的更新看着图就能很快分析出来。如果节点插入到B后面,subL平衡因子为0,parent为1,subLR为0;插入到C后面,subL为-1,parent为0,subLR为0;当只有parent,subL,subLR三个节点时,三者都为0。

template <class K, class V>
void AVLTree<K, V>::RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	size_t bf = subLR->_bf;
	RotateL(subL);
	RotateR(parent);
	
	if (bf == 0)
	{
		subL->_bf = 0;
		subLR->_bf = 0;
		parent->_bf = 0;
	}
	else if (bf == -1)
	{
		subL->_bf = 0;
		subLR->_bf = 0;
		parent->_bf = 1;
	}
	else if (bf == 1)
	{
		subL->_bf = -1;
		subLR->_bf = 0;
		parent->_bf = 0;	
	}
	else
	{
		assert(false);
	}
}

Insert代码

template <class K, class V>
bool AVLTree<K, V>::Insert(const pair<K, V>& kv)
{
	// 先按搜索树的规则插入
	// 然后更新平衡因子

	if (_root == nullptr)
	{
		_root = new Node(kv);
		_root->_bf = 0;
		return true;
	}

	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (kv.first < cur->_kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (kv.first > cur->_kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			return false;
		}
	}

	if (kv.first < parent->_kv.first)
	{
		cur = new Node(kv);
		parent->_left = cur;
		cur->_parent = parent;
	}
	else
	{
		cur = new Node(kv);
		parent->_right = cur;
		cur->_parent = parent;
	}

	// 更新平衡因子
	while (parent)
	{
		if (parent->_left == cur)
		{
			parent->_bf--;
		}
		else
		{
			parent->_bf++;
		}

		// 检查平衡因子,是否要旋转
		if (parent->_bf == 0)
		{
			break;
		}
		else if (parent->_bf == 1 || parent->_bf == -1)
		{
			// 继续更新
			cur = parent;
			parent = parent->_parent;
		}
		else if (parent->_bf == 2 || parent->_bf == -2)
		{
			// 左单旋
			// 较高右子树的右边插入
			if (parent->_bf == 2 && cur->_bf == 1)
			{
				RotateL(parent);
			}
			// 右单旋
			// 较高左子树的左边插入
			else if (parent->_bf == -2 && cur->_bf == -1)
			{
				RotateR(parent);
			}
			// 右左双旋
			// 较高右树的左边插入
			else if (parent->_bf == 2 && cur->_bf == -1)
			{
				RotateRL(parent);
			}
			// 左右双旋
			// 较高左树的右边插入
			else if (parent->_bf == -2 && cur->_bf == 1)
			{
				RotateLR(parent);
			}
			break;
		}
		else
		{
			// 未插入前的平衡树出现问题
			assert(false);
		}
	}
	return true;
}

验证AVL树

根据AVL树的特征:左右子树高度差不超过1,所有的子树都是AVL树,递归树的每个节点,以每个节点为根节点,判断这样的树是否为AVL树。

template <class K, class V>
bool AVLTree<K, V>::_IsAVLTree(Node* root)
{
	assert(root);

	int LHeight = _Height(root->_left);
	int RHeight = _Height(root->_right);

	if (RHeight - LHeight == -2 || RHeight - LHeight == 2)
	{
		cout << "平衡因子异常" << endl;
		return false;
	}
	if (RHeight - LHeight != root->_bf)
	{
		cout << "平衡因子不符合实际" << endl;
		return false;
	}

	if (root->_left)
		_IsAVLTree(root->_left);
	if (root->_right)
		_IsAVLTree(root->_right);

	return true;
}
  • 求出左右子树的高度,判断相减后的绝对值是否为2,若为2,打印出错提示
  • 将两者高度相减后判断是否对于平衡因子,不相等则打印出错提示
  • 最后判断左右子树是否不为空,若不为空则继续递归左右子树
  • 不断得用上面的三个标准判断每一颗子树是否为AVL树在这里插入图片描述
    最后的结果是:通过插入随机数验证

AVL树 VS 红黑树

  • 相同的地方:两者的插入,删除和查找的效率都是logN
  • 不同的地方:
    • AVL树较红黑树严格,保持了高度的平衡,所以查找可能会快一些
    • 红黑树的调整频率比AVL树低,它没有那么严格,所以插入和删除会快一些,但也只是少了几次的旋转
    • 两者的实现难度都很高,需要考虑很多的边界情况,但是红黑树较AVL更好理解,它只有两种颜色,而AVL有四种平衡因子,情况越多,就越需要越细的考虑

综上所述,两种各有优劣,我们需要根据不同的场景选择不同的结构

  • 如果查找操作比较频繁,插入和删除操作少,那么选择AVL树合适
  • 如果插入和删除的操作频繁,删除操作较少,那么选择红黑树合适
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值