第五章 动态规划(二)——线性dp与区间dp

线性dp

898. 数字三角形

898. 数字三角形 - AcWing题库
image.png

状态表示:

  • 集合:数字三角形中的所有路径,用两个维度限制路径的终点, f ( i , j ) f(i, j) f(i,j)表示从起点走到 ( i , j ) (i, j) (i,j)的所有路径
  • 属性:所有路径中的数字和最大值
    最终 f ( i , j ) f(i, j) f(i,j)就表示从起点走到 ( i , j ) (i, j) (i,j)这个点的数字和最大值

状态计算:集合划分,思考 f ( i , j ) f(i, j) f(i,j)这个集合如何划分?
根据题意,从起点到 ( i , j ) (i, j) (i,j)必定经过 ( i − 1 , j − 1 ) (i-1, j-1) (i1,j1) ( i − 1 , j ) (i-1, j) (i1,j)这两个点, f ( i , j ) f(i, j) f(i,j)中的所有路径和一定会加上 ( i , j ) (i, j) (i,j)这个点上的数字,所以路径和的最大值减去这个数字也不影响它是最大值。此时集合就被划分成了 f ( i − 1 , j − 1 ) f(i-1, j-1) f(i1,j1) f ( i − 1 , j ) f(i-1, j) f(i1,j),从两者中取较大值,加上点 ( i , j ) (i, j) (i,j)的数字得到 f ( i , j ) f(i, j) f(i,j)
f ( i , j ) = m a x ( f ( i − 1 , j − 1 ) , f ( i − 1 , j ) ) + a [ i ] [ j ] f(i, j) = max(f(i-1, j-1), f(i-1, j)) + a[i][j] f(i,j)=max(f(i1,j1),f(i1,j))+a[i][j]

tips:若涉及到i-1这样的状态,那么下标从1开始,设置0下标为初始值

#include <iostream>
#include <cstring>
using namespace std;

const int N = 510, INF = 1e9 + 7;
int a[N][N], f[N][N];

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++ i )
        for (int j = 1; j <= i; ++ j )
            scanf("%d", &a[i][j]);
            
    for (int i = 0; i <= n; ++ i )
        for (int j = 0; j <= i + 1; ++ j )
            f[i][j] = -INF;
    f[1][1] = a[1][1];
    
    for (int i = 2; i <= n; ++ i )
        for (int j = 1; j <= i; ++ j)
            f[i][j] = max(f[i - 1][j - 1], f[i - 1][j]) + a[i][j];
    
    int res = -INF;
    for (int j = 1; j <= n; ++ j) res = max(res, f[n][j]);
    
    printf("%d", res);
    return 0;
}

需要注意边界情况,由于我们从1下标开始使用a数组,那么a数组的0行0列都没有使用,此时将它们初始化成-INF,不会影响答案
此外由于 ( i , j ) (i, j) (i,j)的更新需要用到 ( i − 1 , j ) (i-1, j) (i1,j),比如 ( 3 , 3 ) (3, 3) (3,3)要用到 ( 2 , 3 ) (2, 3) (2,3),这个状态不存在,也需要设置为-INF


895. 最长上升子序列

895. 最长上升子序列 - AcWing题库
image.png

计算最长上升子序列的长度
状态表示:

  • 集合:题目给定的序列中,所有的上升子序列。假设序列的长度为n,用序列以第i个数结尾限制集合,其中 1 < = i < = n 1 <= i <= n 1<=i<=n
  • 属性:最大上升子序列长度
    所以 f ( i ) f(i) f(i)表示:题目给定的序列中,以第 i i i个数结尾的最长子序列

状态计算:
如何划分 f ( i ) f(i) f(i)这个集合?从序列的角度考虑,以第 i i i个数结尾的序列,倒数第二个数可能是什么?第 1 , 2 , . . . , i − 1 1, 2, ..., i-1 1,2,...,i1个数,以这些数结尾的序列为 f ( 1 ) , f ( 2 ) , . . . , f ( i − 1 ) f(1), f(2), ..., f(i-1) f(1),f(2),...,f(i1),将这些序列加上a[i]就能得到 f ( i ) f(i) f(i),所以,这些集合不重不漏组成集合 f ( i ) f(i) f(i)
由于题目要求的子序列是上升的,因此子序列 f ( 1 ) , f ( 2 ) , . . . , f ( i − 1 ) f(1), f(2), ..., f(i-1) f(1),f(2),...,f(i1)的最后一个数小于第i个数,才能构成上升序列
a[j] < a[i]时,有 f ( i ) = m a x ( f ( i ) , f ( j ) + 1 ) f(i) = max(f(i), f(j) + 1) f(i)=max(f(i),f(j)+1)

思考 f ( i ) f(i) f(i)的初始状态,最坏情况下,最长上升子序列就是自己,长度为1,即 f ( i ) = 1 f(i)=1 f(i)=1

#include <iostream>
using namespace std;

const int N = 1010;
int a[N], f[N];

int main()
{
    int res = 1, n;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++ i ) scanf("%d", &a[i]), f[i] = 1;
    
    for (int i = 2; i <= n; ++ i)
        for (int j = 1; j < i; ++ j )
            if (a[j] < a[i]) 
            {
                f[i] = max(f[i], f[j] + 1);
                res = max(res, f[i]);
            }
                
    printf("%d", res);
    
    return 0;
}

若题目要求打印最长上升子序列,我们需要额外记录当前状态是从哪个状态更新来的

#include <iostream>
using namespace std;

const int N = 1010;
int a[N], f[N], p[N];

void out(int k)
{
    if (p[k] != 0) out(p[k]);
    printf("%d ", a[k]);
}

int main()
{
    int res = 1, n;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++ i ) scanf("%d", &a[i]), f[i] = 1;
    
    for (int i = 2; i <= n; ++ i)
        for (int j = 1; j < i; ++ j )
            if (a[j] < a[i]) 
            {
                if (f[j] + 1 > f[i])
                {
                    f[i] = f[j] + 1;
                    p[i] = j;
                    res = max(res, f[i]);
                }
            }
    
    int k = 1;
    while (f[k] != res) k ++ ;
    out(k);
    
    return 0;
}

897. 最长公共子序列

897. 最长公共子序列 - AcWing题库
image.png

求出现在 a a a序列以及 b b b序列中的最长公共子序列长度

状态表示:

  • 集合:所有公共子序列,用两个维度限制这些子序列。在 a a a序列的前 i i i个字符中出现的子序列同时也在 b b b序列的前 j j j个字符中出现
  • 属性:所有公共子序列中,最长的子序列长度
    f ( i , j ) f(i, j) f(i,j)表示在 a a a序列的前 i i i个字符中出现,同时也在 b b b序列的前 j j j个字符中出现的最长子序列

状态计算:如何划分 f ( i , j ) f(i, j) f(i,j)这个集合?根据公共子序列是否包含 a [ i ] , b [ i ] a[i],b[i] a[i]b[i]划分成四种情况。也就是公共子序列的最后一个字符是否是 a [ i ] a[i] a[i] b [ j ] b[j] b[j]

  • 00:公共子序列不包含两者(此时 a [ i ] ! = b [ j ] a[i]!=b[j] a[i]!=b[j]
  • 11:公共子序列包含两者(此时 a [ i ] = b [ j ] a[i]=b[j] a[i]=b[j]
  • 01:公共子序列不包含 a [ i ] a[i] a[i]但包含 b [ i ] b[i] b[i]此时 a [ i ] ! = b [ j ] a[i]!=b[j] a[i]!=b[j]
  • 10:公共子序列包含 a [ i ] a[i] a[i]但不包含 b [ i ] b[i] b[i]此时 a [ i ] ! = b [ j ] a[i]!=b[j] a[i]!=b[j]

00用 f ( i − 1 , j − 1 ) f(i-1, j-1) f(i1,j1)表示:在 a a a序列的前 i − 1 i-1 i1个字符出现并且在 b b b序列的前 j − 1 j-1 j1个字符中出现的子序列,此时这些子序列一定不包含 a [ i ] , b [ j ] a[i],b[j] a[i]b[j]
11用 f ( i − 1 , j − 1 ) + 1 f(i-1, j-1) + 1 f(i1,j1)+1表示:由于子序列包含两者( a [ i ] = b [ j ] a[i] = b[j] a[i]=b[j]),所以子序列的最后一个字符一定是 a [ i ] ( b [ j ] ) a[i](b[j]) a[i]b[j]。删除这个字符,此时的状态为 f ( i − 1 , j − 1 ) f(i-1, j-1) f(i1,j1) f ( i , j ) f(i, j) f(i,j)最长公共序列长度需要在此基础上+1
01用 f ( i − 1 , j ) f(i-1, j) f(i1,j)表示:在 a a a序列的前 i − 1 i-1 i1个字符出现并且在 b b b序列的前 j j j个字符中出现的子序列,注意:01是 f ( i − 1 , j ) f(i-1, j) f(i1,j)的子集,因为 f ( i − 1 , j ) f(i-1, j) f(i1,j)中,只有部分子序列是以 b [ j ] b[j] b[j]结尾的
10用 f ( i , j − 1 ) f(i, j-1) f(i,j1)表示:在 a a a序列的前 i i i个字符出现并且在 b b b序列的前 j − 1 j-1 j1个字符中出现的子序列,注意:10是 f ( i , j − 1 ) f(i, j-1) f(i,j1)的子集,因为 f ( i , j − 1 ) f(i, j-1) f(i,j1)中,只有部分子序列是以 a [ i ] a[i] a[i]结尾的

虽然 00 , 11 , 01 , 10 00,11,01,10 00,11,01,10这四个集合能够不重不漏的组成 f ( i , j ) f(i, j) f(i,j),但是这四个集合转换后的f状态不能不重不漏组成 f ( i , j ) f(i, j) f(i,j),因为01和10的f状态不够准确
虽然01和10的f状态不准确,但是两者的最长公共子序列是相同的,所以取max之后两者是等价的
并且 f ( i − 1 , j ) f(i-1, j) f(i1,j) f ( i , j − 1 ) f(i, j-1) f(i,j1)取max后的结果 >= f ( i − 1 , j − 1 ) f(i-1, j-1) f(i1,j1),所以不用特别的对 f ( i − 1 , j − 1 ) f(i-1, j-1) f(i1,j1)取max

#include <iostream>
using namespace std;

const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];

int main()
{
    scanf("%d%d", &n, &m);
    scanf("%s%s", a + 1, b + 1);
    
    for (int i = 1; i <= n; ++ i )
        for (int j = 1; j <= m; ++ j )
        {
            f[i][j] = max(f[i - 1][j], f[i][j - 1]);
            if (a[i] == b[j]) f[i][j] = max(f[i][j], f[i - 1][j - 1] + 1);
        }
        
    printf("%d\n", f[n][m]);
    return 0;
}

区间dp

282. 石子合并

282. 石子合并 - AcWing题库
image.png
状态表示:

  • 集合:对于给定的石子,所有的合并方法。用两个维度限制集合中的元素——合并第 i i i堆石子到第 j j j堆石子的方法
  • 属性:所有合并方法中的最小代价
    f ( i , j ) f(i, j) f(i,j)表示合并第 i i i堆石子到第 j j j堆石子的最小代价

状态计算:要将一个区间内的石堆合并一堆石子,最后一步一定是将两堆石子合并成一堆,由于只能合并相邻的石堆,所以最后一步需要合并的两个石堆一定是相邻的。根据这个性质从 [ i + 1 , j − 1 ] [i+1, j-1] [i+1,j1]枚举两堆石子的分界点,这些情况能不重不漏的组成 f ( i , j ) f(i, j) f(i,j)

再考虑状态的属性:合并石堆的最小代价。最后一步合并两堆石子的代价是 a [ i ] , . . . , a [ j ] a[i],... ,a[j] a[i],...,a[j]的石子数累加。即,无论两堆石子是怎样合并的,这两堆石子数量相加一定等于 a [ i ] , . . . , a [ j ] a[i],... ,a[j] a[i],...,a[j]的石子数累加。省略付出的相同代价,枚举分界点找到 f ( i , k ) + f ( k + 1 , j ) f(i, k) + f(k+1, j) f(i,k)+f(k+1,j)的最小值即可,其中k从 ( i , j − 1 ) (i, j-1) (i,j1)

注意:区间dp与线性dp不同,线性dp一般有一个状态更新的方向,把状态抽象成n维矩阵后,这个方向是线性的
而区间dp的状态更新,需要从最小的区间开始,即,区间的长度越来越大

本题中,区间长度为1时,付出的代价为0,即,没有代价,所以从区间长度为2时开始更新
我们从2开始枚举区间长度,以第1堆石子作为左端点,根据长度得到右端点,更新该区间

#include <iostream>
using namespace std;

const int N = 310, INF = 1e9;
int f[N][N];
int s[N];

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++ i ) scanf("%d", &s[i]);
    for (int i = 1; i <= n; ++ i ) s[i] += s[i - 1]; // 前缀和数组的构造

    for (int len = 2; len <= n; ++ len )
    {
        for (int i = 1; i + len - 1 <= n; ++ i )
        {
            int l = i, r = i + len - 1;
            f[l][r] = INF;
            for (int k = l; k < r; ++ k ) // k作为分界点
                f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
        }
    }
    
    printf("%d\n", f[1][n]);
    
    return 0;
}

由于合并区间 [ i , j ] [i, j] [i,j]的最后一步中,一定会付出从 a [ i ] a[i] a[i]累加到 a [ j ] a[j] a[j]的代价,所以这里用前缀和数组代替原数组已方便计算


线性dp练习题

896. 最长上升子序列 II

896. 最长上升子序列 II - AcWing题库
image.png

思考算法是否存在可以优化的地方:在划分 f ( i ) f(i) f(i)这个集合时,我们将 O ( n ) O(n) O(n)地遍历数组中第1~i-1个数,若该数小于第i个数,则试着更新 f ( i ) f(i) f(i)
a [ j ] < a [ k ] a[j] < a[k] a[j]<a[k],并且 a [ i ] > a [ k ] a[i] > a[k] a[i]>a[k],那么在以第i个数结尾的上升子序列中,第j个数和第k个数都能作为倒数第二个数。其中 a [ j ] < a [ k ] < a [ i ] a[j] < a[k] < a[i] a[j]<a[k]<a[i],若 a [ i ] a[i] a[i]能接到 a [ k ] a[k] a[k]后,那么它一定能接到 a [ j ] a[j] a[j]后,因为 a [ j ] a[j] a[j] a [ k ] a[k] a[k]
在最长上升子序列长度相等的情况下,不同的上升子序列最后一个数不同,我们只要保存这些子序列中最后一个数的最小值即可,这里有贪心的思想:长度相同的情况下,最后一个数越小,那么它后面可能接的数就越多,上升子序列的长度可能越大

同时,随着上升子序列长度的增加,最后一个数的最小值也在增加
用反证法:前提是相同长度的上升子序列,我们只保存其最后一个数的最小值
假设长度为6的上升子序列最后一个数小于等于长度为5的上升子序列的最后一个数。对于长度为6的上升子序列的倒数第二个数,其肯定小于最后一个数,那么也肯定小于长度为5的上升子序列的最后一个数。说明长度为5的上升子序列的最后一个数不是所有长度为5的上升子序列最后一个数中的最小值,与前提矛盾,所以:随着上升子序列长度的增加,最后一个数的最小值也在增加

如何求得以 a [ i ] a[i] a[i]结尾的最长上升子序列长度?在这个上升子序列中,倒数第二个数一定要小于第i个数,在所有小于 a [ i ] a[i] a[i]的数中(这些数都出现在第i个数之前)选择最大的数(贪心的思想),并拼接到其后面,就能得到以 a [ i ] a[i] a[i]结尾的最长上升子序列
假设我们已经保存了不同长度下最长上升子序列的最小值,由于这些最小值具有单调性,所以自然地想到二分,我们能用二分找到小于 a [ i ] a[i] a[i]的边界,第一个小于 a [ i ] a[i] a[i]的数就是所有小于 a [ i ] a[i] a[i]的数的最大值,将 a [ i ] a[i] a[i]拼接到该数后面,就能得到以 a [ i ] a[i] a[i]结尾的最长上升子序列
接着更新第一个大于 a [ i ] a[i] a[i]的数为 a [ i ] a[i] a[i],即相同长度的上升子序列中,出现了一个结尾更小的数

#include <iostream>
using namespace std;

const int N = 1e5 + 10;
int a[N], q[N];

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++ i ) scanf("%d", &a[i]);
    int len = 0;
    q[0] = -2e9;
    for (int i = 1; i <= n; ++ i )
    {
        int l = 0, r = len;
        while (l < r)
        {
            int mid = (l + r + 1) >> 1;
            if (q[mid] < a[i]) l = mid;
            else r = mid - 1;
        }
        q[l + 1] = a[i];
        len = max(len, l + 1);
    }
    printf("%d", len);
    
    return 0;
}

902. 最短编辑距离

902. 最短编辑距离 - AcWing题库
image.png

状态表示:
集合:所有的变换方式,用两个序列的前几个字符限制全集。即 f ( i , j ) f(i, j) f(i,j)表示从A序列的前i个字符变换到B序列的前j个字符的变换方式
属性:所有变换方式中的最小变换次数
f ( i , j ) f(i, j) f(i,j)表示从A序列的前i个字符变换到B序列的前j个字符的最小变换次数

状态计算:如何划分 f ( i , j ) f(i, j) f(i,j)这个集合?考虑变换的最后一步,由于变换方式有三种,所以集合能被划分成三个子集
增:在A序列的最后增加一个字符,使得A序列的前i+1个字符和B序列的前j个字符相等,此时需要保证A序列的前i个字符和B序列的前j-1个字符相等,且增加的字符为 b [ j ] b[j] b[j]。集合表示为 f ( i , j − 1 ) f(i, j - 1) f(i,j1)
删:删除A序列的最后一个字符,使得A序列的前i-1个字符和B序列的前j个字符相等,此时需要保证A序列的前i-1个字符和B序列的前j个字符相等,集合表示为 f ( i − 1 , j ) f(i - 1, j) f(i1,j)
改:当 a [ i ] a[i] a[i] b [ j ] b[j] b[j]不同时,将 a [ i ] a[i] a[i]修改为 b [ j ] b[j] b[j],此时需要保证A序列的前i-1个字符和B序列的前j-1个字符相等,集合表示为 f ( i − 1 , j − 1 ) f(i-1, j-1) f(i1,j1)。当 a [ i ] a[i] a[i] b [ j ] b[j] b[j]相同时,不需要修改
所以 f ( i , j ) f(i, j) f(i,j)就要在这三者中取最小,即$f(i, j) = min(f(i, j-1) + 1, f(i-1, j) + 1, f(i-1, j-1) + 1/0)

#include <iostream>
using namespace std;

const int N = 1010;
char a[N], b[N];
int f[N][N];

int main()
{
    int n, m;
    scanf("%d%s", &n, a + 1);
    scanf("%d%s", &m, b + 1);
    for (int i = 1; i <= n; ++ i ) f[i][0] = i;
    for (int j = 1; j <= m; ++ j ) f[0][j] = j;
    
    
    for (int i = 1; i <= n; ++ i )
        for (int j = 1; j <= m; ++ j )
        {
            if (a[i] == b[j])
                f[i][j] = min(min(f[i - 1][j] + 1, f[i][j - 1] + 1), f[i - 1][j - 1]);
            else
                f[i][j] = min(min(f[i - 1][j] + 1, f[i][j - 1] + 1), f[i - 1][j - 1] + 1);    
        }

    printf("%d", f[n][m]);
    
    return 0;
}

debug:char数组用%d读取,属于是习惯了


899. 编辑距离

899. 编辑距离 - AcWing题库
image.png

最短编辑距离的变形,算法都一样,处理输入输出就行

#include <iostream>
using namespace std;

const int N = 1010, L = 20;
char a[N][L], b[L];
int f[L][L];

int dis(char a[], char b[])
{
    int n, m;
    for (n = 1; a[n]; ++ n ) f[n][0] = n;
    for (m = 1; b[m]; ++ m ) f[0][m] = m;
    
    for (int i = 1; i < n; ++ i )
        for (int j = 1; j < m; ++ j )
        {
            if (a[i] == b[j])
                f[i][j] = min(f[i - 1][j] + 1, min(f[i][j - 1] + 1, f[i - 1][j - 1]));
            else
                f[i][j] = min(f[i - 1][j] + 1, min(f[i][j - 1] + 1, f[i - 1][j - 1] + 1));
        }
    return f[n - 1][m - 1];
}

int main()
{
    int n, m, lmt;
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; ++ i ) scanf("%s", a[i] + 1);
    while (m -- )
    {
        int res = 0;
        scanf("%s%d", b + 1, &lmt);
        for (int i = 0; i < n; ++ i )
            if (dis(a[i], b) <= lmt) res ++ ;
        printf("%d\n", res);
    }
    
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值